0318F T1l-vYvy.'¢ Book 3 Hdvanced BALIL Programmlng

Cover Copy: A key ta the more progressive capabilities
of programming in BASIC.

(title pasge)
Basic Computer 99/

Book 3: Advanced BASIC Programming

Copyright ¢ 1983 Texas Instruments Incorporated

. Page 1

0318P TI-99/2 Book 3 Advanced BASIC Programming

Book 3: Advanced BASIC Programmlng

Contents

Intruduttian] - a] " l o - LB a » " - - . o a - l » 8 4 L » n a - - o lxx

More about Variables and Assignment Statements . &« . &= ¢ « ¢ 2 = = .
Unconditional Branching~-Using GOTO and ON GOTO

Using NUM (NUMBER) and RES (RESEQUENCE) . . « . &

Using READ and DATA Statements

Using Functions in T1-99/2 BRSIC
Using Trigonometric Functions-—-SIN, COS, TAN, ATN
Using EXP, LOGs and SOR Functions . « « « o » «
Using String Functiong—-STR$, CHR$y, and LEN . . .

Review

Using Subscripted Variables
What is an Array? o« v = o = « o &« =

.What Kinds of Expressions Can Be Used
Using FOR-NEXT Loops with Arrays

as Subscripts?

L] . u L 2 L » | n »]

What Is the Largest Subscript an Array Can Have? . .
Why Do We Use ArrayS8? « o« = s = o o s s s o a s s » s

Searching An Array
Using Two—-dimensional Arrays

Using Three-dimensional Arrays
Review

Understanding Subroutines--GOSUB,

Debugging Your Programs . . .
Using Subprograms--CBraphics .
File Processing « « » = « & &
REViOW 4+ o s s s & » a » = %
Answers to Review [Questions .
Applications Programs « « . &

RETURN, and STO

Page C

| [] m L - [L]]]

. 2 XX

[| | L | lxx
Conditional Branching—IF THEN . & « ¢ « ¢« « ¢« o« = a s« o 5 2 2 » = s » XX
More about FOR-NEXT LOOPS « s « % = = 2 o » o a u » &

e » XX
. « XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
AX
XX
XX
. KX
XX
XX
XX
XX
XX
XX
XX
XX
XX

X
A

318 LYY, 2 OOk O Hu./ained DRO4AL P oJg i)y
Introduction

If vyou have worked your way through Book 2, you have learned a lot about your
computer and its language. You have been getting comfortable with the
keyboard and familiar with TI-99/2 BASIC while sampling the capabilities and
versatility of your computer. You have also learned quite a bit about the
fundamentals of programming in TI-99/2 BASIC.

Now that you are ready for a more advanced and serious study of programming,
there are a few terms and expressions that you should learny they are a part
of any serious programmer‘s vocabulary. These terms are simply more precise
and accurate ways to discuss and describe computer programming. T1he first few
sections of Book 3 serve to review many of the concepts you have already
studied and to introduce these new terms and expressions to you. Then you are
introduced to some of the more advanced capabilities of your computer.

You should enter and run all of the program examples in Book 3. Feel free to
use all of the editing techniques you have learned in Book 2 to change and
experiment with these examples. Refer to Book 4 if you have guestions about a

gpecific command, statewent, or function.

Page 3

U3lBP TI-9v,2 buok 4 Hdvanced BRoiw v Jgrammilny
More about Variables and Assignment Statements

As mentioned in Boaok 2, a variable i1s a name assigned to a numeric value or a
sequence of characters (character string). There are two types of variables,
numeric and string. Both numeric and string variables can be from 1 up to 15
characters long. Variable names must begin with either a letter, an "at" sign
(@), a lefi bracket ([}, a right bracket (1)y a back slash ()y or an
underline (_). The only characters allowed in a variable name after the first
character are letters, numbers, an "at” sign (@), and an underline (_.). The
exception to this is the dollar sign (), which must be the last character in
a string variable name. The dollar sign character may not be used in any
other place in a variable name.

Yalues assigned to numeric or string variables are called gonstapis.
Constants are either numeric or string. The following rules must be observed
with constants:

Numeric Constants: |

of Commas and spaces cannot appear within a number.

'o! Numbers can be expressed in expopential_potatiop, which 1s a
special format of scientific notation in which the number 10 1is
replaced by the letter E; there are no spaces within the
expression. Exponential notation cansists of the paniissa or base
number (preceded by the minus sign if negative), followed by the
letter E, followed by the power of 10 (preceded by a minus sign if

-
negative). (8.4 x 10 , or .000084, is the same as 8.4E-6.)

gt Negative numbers must be preceded by a minus signy a plus sign
preceding a positive number is optional.,

lo! TI-99/2 BASIC displays up %o 10 digits of a number; numbers with
more digits are displayed in exponential notation.

! Exponential notation enables you to enter and evaluate calculations
With numbers of magnitudes as small as +1E-128 or as large as
 19.9999999999999E127. | .

1o! Zero is a valid numeric constant.

String Constants:
'o! String constants are usually enclosed in quotation warks. The

quotation marks may be omitted when a string canstant is used in a

S DATA statement or entered to an INRUT statement.
g String constants include characters such as letters, numerals,
spaces, and symbols; spaces within a string constant are counted as

characters of that string. -
'o! Al11 characters on the keyboard that can be displayed can be used in

a string. |
‘ol The length of a string is limited by the length of the input line
(112 characters or four lines on the screen).

i discussed in Book 2, numeric and string variables are assigned values with
the assignment statement. The assignment statement consists af the optional
word LET, a variables an equals signs, and a numeric or string constant. The
constant to the right of the equal sign is assigned to the variahle to the

left of the equals sign, as shown below.

- ——

o

LET K=50
A=3.4 |
N$="NAME *

Page 4

0318P TI-99/2 Book 3 Advanced BRSIC Programming

String expressions can be joined together by using an ampersand (&). This

operation is called concatepatian.

“W$=“WHAT IS YOUR *
~NS=*NAME?"

7 5=WOENS

»PRINT Z$

WHAT IS YOUR NAME?

The INPUT statement also can be used to assign constants to variables. The
INPUT statement causes the computer to stop the program, display either a
question mark or a prompting message, and wait for a value to be entered from
the kevboard. The following rules must be followed when you use the INPUT

statement.
'o! Variables in INPUT statements must be separated by commasj for
example: INPUT X,Y,Z,C$
lo! The values or data entered must correspond in number and type to

the variables listed in the INPUT statement. In the pravious
example, three numeric values followed by one string value must be

enteraed to the INPUT statewent.

'o! Strings entered in response td an INPUT statement may be enclosed
in quotes. Strings containing commas, quotation marks, or leading
or trailing spaces must be enclosed in quotes.

READ and DATA statements can also be used to assign values to variables within
"a proaram. READ and DATA statements are discussed later.

In the program on the right, A 1s
the numeric variable. B$ is the
string variable. Note that the
numeric variable A in line 100 1s
assigned the value 10, which is a

numeric constant, because it represents

a number. *“EASTER IS COMING" 13 a
string constant. :

This program example shows the use
of INPUT statements, complete with
prompting messages, to assign
string constant values to string
variables. Note that numerals are
assigned as a value to the string
~ariable A% in line 110. RUN the -
program, entering your name and age
at the appropriate prompts.

NEW

»100 A=10

110 B$="EASTER IS COMING®
»120 PRINT A

%130 PRINT B$

>RUN
10

" EASTER IS COMING
¢ DONE **

NEW

100 INPUT *MY NAME IS *:N$
%110 INPUT “AGE? “:R$
»120 PRINT N$;A$

3130 GOTO 100
+RUN
MY NAME IS ANN
AGE? 18
ANN 18
#% DONE %%

Page &

0318P TI-99/2 Book 3 Advanced BASIC Programming
Unconditional 8ranching--Using GOTO and ON GOTO

Many times in a program vyou need to alter the flow of the program by directing
the computer to a statement other than the next statement in sequence. In
TI-99/2 BASIC, one way to do this is by means of upncpndiiianal broanching
statements.

The GOTO statement is used to direct the computer unconditionally to another
statement. When the GOTO statement is executed, the computar always goes to
the statement specified by the line number 1in the*GﬂTD statement.

~100 INPUT X
#1100 PRINT X

120 GOT0 100

When the above program is executed, line 100 prompts for a value for X. After
a value is entered, the computer printz the value and jumps back toa line 100,
as indicated by the GOTO statement. This jump (or transfer of control) is

called an uncapditiopal brapch.

The above program is an example of an endless 1nop} the computer asks for and
prints another value of X indefinitely. The BREAK or CLEAR key must be
PFEﬁEEd to stop the program.

The ON GOTO statement, a GOTO statement with wmore options, has the following
format.

ON variable GOTO lipe-list

This statement, like the GOTO statement, also can be considered an.
unconditional branching statement because it always transfers control 1o
another line. Hawever, ON GOTO transfers control to a selected line from the
lige~1list. The line selected depends on the value of the variable.

e

When this statement is executed, the variable after the word ON is rounded to .

the nearest integer. If the value is 1, the computer branches to the first

number in the lipe-list. If the value is 2, it branches to the second line
number, and so on. If the value is less than one or greater tharn the number
of line numbers specified (for examples the value is 4 but only three line

. numbers are listed), the program stops .nd an error message is displayed.

Page 4

vator 11-YY.¢ BOOk J

~NEW

+100

THE
»110
120
130
+140
»150
»160
»170
+180
»190
200

REM HOW MANY GIFTS ON
12 DAYS OF CHRISTMARS?
GIFTS=0

DRYS=1

COUNT=0

COUNT=COUNT+1
GIFTS=GIFTSt1

IF COUNT=DAYS THEN 180
GOTO 140

DAYS=DAYSH1

'IF DAYS<=12 THEN 130

PRINT “TOTAL NUMBER OF G

IFTS IS"3;GIFTS

~RUN

TOTAL NUMBER OF GIFTS IS 78

Xt DONE *%

In the example belows the INPUT statement prowpts for a number.

HOvaneed HHOLIL cVuygi colibih iy

Enter and run

the program, entering the numbers 1, 2, and 3 respectively to see the results

qf each.

»NEW
>100 INPUT “ENTER A NUMBER FR

OM 1 TO 3 2*:N
>110 IF (N<1)4(N>3) THEN 100
»120 ON N GOTO 130,150,170
>130 PRINT “NOMW AT 130"::
~»140 GOTO 100
>180 PRINT “NOW AT 150"::
»160 GOTQ 100

»170 PRINT “NOW AT 170%3"THE
END*®

Page 7

O318P TI-99/2 Book 3 dAdvanced BARSIC Programming

Conditional Branching—IF THEN

Sometimes the tranefer of control to another portion of the program depends
upon certain conditions} thus it is called capditiapal_branching. The IF THEN
statement tells the computer to branch to another lipe if a specif:iad
condition iz met. The format is as follows:

IF condition THEN lipe-number

The IF THEN statement is used when a decision is to be made by the computer.
If the condition is true, the computer branches to the specified line number.
If the condition is false, the computer does not branch to the specified line
but 'simply continues to the next line in sequence.

The condition used in an IF THEN statement is usually a celaiiopal. expressions
which has a value of true or false. A relational expression (for example,
X=5) compares two numeric expressions or two string expressions. The
mathematical symbol between the two elements in a relational expression must

be one of the following prelatiopnal oeerators.

= Equal to

Lo Not equal to

! Less than N
= Less than or equal to

- Greater than

= Greater than or equal to

Some examples of relational expressions and their values area:

Relational Expression Value

5=11 false

N>e*/7 true only if N is greater than 14

X+Y<A+B true only if the sum X and. Y is less
than the sum of A and B

“THIS"="THAT" false

"apch* "*ABC™ false

Enter the program on the right. When a digit is entered from the keyboard,
“the ' IF 'statement determines whether the digit is zero. If the digit is zerg

(the condition is true), line 140 is executed. If the digit is nonzera (the
condition is false), line 120 is executed.

The IF THEN statement can alse use the ELSE option. The general format for
this statement is shown below. !

+ IF conditiop THEN lipe—oumberl ELSE lipecpumberds

oy

The ELSE option enables you to branch to a line other than the next line 1n
sequence if the condition is false. The program on the right, which finds the
largest value in a set of numbers, uses an IF THEN ELSE statement at line 1560.

Page 8

0318P T1-9%/2 ook 4 Rdvanced buHbiu Firogi amining

The program on the right contains
IF THEN statements at lines 140 and
200. At these points, the computer
must decide if the problem has been
ansuwered correctly. If so, the
program branches to a line that
prints a reward message. If not,
the program branches to a line

that prints a prompt to try again.
Then the problem is presented
again by branching back to the
appropriate line number with

a GOTO statement.

If you enter 4 for the first input
prompt and 12 for the second, you

- get the result on the right.

Run the program again and see what
happens when you answer the problems
incorrectly.

~NEW

»100 INPUT “ENTER A DIGIT: "D

110 IF D=0 THEN 140

NEW

+100
»110
>120
¥130
»140
150
>140
%170
>180
190
>200
5210
*220
»230
> RUN

PRINT "MATH PROBLEMS"
PRINT

PRINT "2 TIMES 27
INPUT A

IF Q=4 THEN 170

PRINT "WRONG, TRY AGRIN"
GOTO 120

PRINT *"VERY GOOD"“

INPUT B

PRINT "6 TIMES 27 *

IF B=12 THEN 230

PRINT "SORRY, TRY AGAIN"
GOTO 190

PRINT “RIGHT"

MATH PROBLEMS
e TIMES 27

74

VERY GOOD

712

RIGHT

%% DONE **

»>120 PRINT “NONZERQ DIGIT ENTERED*

»130 GOTO 100
>140 PRINT "ZERO ENTERED"
»15%0 GOTO 100

Lines. 100 and 110 prompt for the
number of values to be entered
(TOTAL) and the first value (NUMBRE),
respectively. The value of NUMBRE
igs assigned to the variable LARGE
and TOTAL is reduced by 1. If all
the values have been entered, the
value of LARGE is printed.
Jtherwise, the INPUT statement at
Iine 150 prompts for another value,
which is then compared to the current
LARGE.
the larger, the program branches to
line 130.
than the value entered, LARGE is _
assigned the new value in line 120.

SNEW

100 INPUT "NUMBER OF VALUES?S
110 INPUT “ENTER VALUE: " INUMBRE

»120

LARGE=NUMBRE

»130 TOTAL=TOTAL-1

>140 IF TOTAL<=0 THEN 170
>180 INPUT “ENTER VALUE: “INUMBRE

+160 IF LARGENUMBRE THEN 130 ELSE 120

If the value of LARGE is still

If the value of LARGE is less

Page 9

“ITOTAL

_>»170 PRINT "LARGEST VALUE ENTERED="3;LARGE

0318P TI-99/2 Book 3 Advanced BASIC Programming

The IF THEMN statement can also be used with numeric expressions. R numeric
expression is evaluated, and 1f it has any noniero value, the expression 1s
considered true. The expression 1s considered false if it has a zero value.
In the example

IF N THEN 120

the value of N is compared with zero. If N is equal to zero, the condition 13
false. If N has any nonzero value, the condition is true.

The IF THEN statement also can be used to determine if more than one
relational expression is true or false. This testing of multiple expressians
invelves using the lagical AND ar the logical OR. The logical AND requires
that all the relational expressions included in the condition be true for the
condition to be true. The logical OR requires that at least one of the
relational expressions in the condition be true.

A logical AND can be implemented on the T1-99/2 Computer by using the
multiplication operator (¥) between relational expressions as in the axample
below.

IF (20>2%7)%(2<5) THEN 120

The relational expression 20:2%7 is true, which means 1t has a nonzero value.
The relational expression 2<5 is also true. Because neither expression has a
‘value of zero, the product of these two true expressions is a nonzero value.
Therefore, program control is transferred to line 120.

Note that the statement
IF (R02%7)%#(2>8) THEN 120

is false because one of its expressions is false (has a value of zero).

y

The ztatement
IF (N>2%7)%(A>5) THEN 120

 compares the values of variables using the previous IF THEN -tatement. If N
'has & value greater than 14, the first relational expression 1s true (has a
nonzera value). If A has a value greater than 5, the second relational
axpression is true. If either expression is false, the relational expresszion
has a value of zero, which makes the condition false (have a zero value).

A logical OR is implewented on the Basic Computer 99/2 by using the addition
operator (+) between relational expressions. A logical OR checks whether
either expression is true (has a nonzero value). If sos the cgnditiun 15

considered true. In the example
IF (20:2%7)4(2>5) THEN 120

the first expression is true (has a nonzero value) and the second expression
ie false (has a zero value). The sum of these expressione results in a
nonzera value, which is considered. true.

Page 19

0318P TI--99/2 Book 4 Rdvanced HhLliIC Programming
More about FOR-NEXT Loops

Qs discussed in Book 2, FOR and NEXT statements are useful for specifying how
many times a loop is ta be performed. The loop begins with a FOR TO statement

as shown in the example on the right.

When you specify the number of times the loop iz to be performed in line 100,
you are setting conditions that control when and where the computer branches.
This FOR TO statement sets up a loop that is executed 100 times. 1 1s called
the firet or ipitial value and 100 is the limit. A acts as a counter for the
loop and is called a canical waciable.

At line 100, A is assigned a value of 1. Line 110 prints the current value of
A, The NEXT statement at line 120 wmarks the end of the FOR-NEXT loop. The
NEXT statement increments R by 1 and checks whether the value of A is greater
then the limit. If the value of A is not greater than the limit, control is
transferred back ta line 110. Each time through the loop the value of R is
increased by 1 until the maximum value of A (100) is reached.

The FOR TO statement has an option (not covered in Bdok 2) that enables you to
increment the value of the control variable by any integer you choase. This
is dane by including the word STEP and the integer to be added. Modify line

100 as shown on the right.

When the loop begins, the variable A is equal to 1 (the initial value). The
“value of A is printed. The NEXT statement increases A by the value specified

by STEP (in this case, 10). The loop is repeated until the value of A has
reached the limit. If the STEP option is not used, the computer autamat1cally
increments the value of the control variable by +1.

You can also cause the control variable to decrease instead of increase by
including the STEP option with a negative increment. As before, the contral
variable is assigned the initial value. The second time through the loop the
control variable is decreased when the negative increment is added to the
initial value. The control variable is decreased by the increment until the

control variable equals the limit.

In the previous example, A is 10 the first time through the loap. As the loop
is performed, the value uf A is 8, 6y 4y 2y and 0. UWhen A equals 0, the |

pragram ends.

As discussed in Book 2, you can create loops within loops by using multiple
FOR and NEXT statements. The program on the right has two FOR-NEXT loops.
The first loop starts at line 100 and ends at line 140. Within this loop,
there is another loop that begins at line 110 and ends at line 130. This

loopy called a pgsied loap, is embedded in the first loop. When using a
nested loop, you must end it with a NEXT statement before you end the outer

loop (NEXT B must come before NEXT R). Different contral variables must be
used for each loop.

Page 11

0318P TI-59/¢

= NEW

»100
+110
»120

+100
»110
+120

»100
+119Q

»120

~+NEW

*>100
>110
»120
»130
+140

FOR A=1 TO 100
PRINT A
NEXT A

FOR A=1 TO 100 STEP 10
PRINT A
NEXT A

FOR A=10 TO O STEP -2
PRINT A
NEXT A

FOR A=1 TO 10 STEP €
FOR 8=2 TO 11 STEP 3
PRINT A;B

NEXT B

NEXT A

There are 3 loops in the program on
the right.
first one. Note that the three
control wvariables have different
names (X, Yy 2).

X=1 (initial value) for all values

of Z and Y. Then X is incremented by

3.

Two are nested inside the

Hook 3 Advanced BHuie Programming

< NEW

»100 FOR X=1 T0 4 STEP 3
>110 FOR ¥=5 TO 10 STEP §
»120 FOR Z=30 T0 40 STEP 10
170 PRINT X332
>140 NEXT 2
»1580 NEXT Y
»160 NEXT X
=>RUN

1 &5 30

1 § 40

1 106 30

i 10 40

4 5§ 30

4 5 40

4 10 30

4 10 40

#% DONE %%

Page 1¢

0318PF Tl-vy/2 bBook 3 Rdvanced UHLIL Froglo amming
Using NUM (NUMBER) and RES (RESEQUENCE)

Thus far, you have typed your own line numbers for each program that vou have
antered. Your computer has a feature, howaever, whereby you can instruct 1t to
automatically generate line numbers for you. This is especially convenient
when you are entering longer programs.

To use this feature, just enter the command NUM (or NUMBER). The computer 1is
now in Number Mode. Notice that the first line number generated is 10Q0Q.
Notice also that the space after the number is already inserted. Enter this

program line.

PRINT "BASIC COMPUTER"

When you press ENIER, notice that the next line number generated 1is 110. Now
anter this program line.

GOTO 100

When vyou press ENJER, line number 120 is generated. To Jeave Number Mode,

just press ENTER again (without typing a program line 120). Clear the screen
with CALL CLEAR and LIST the program. Notice that there is not a line 120 in
the program. You can now RUN the program. Press BREAK to stop the program.

Obviously the NUM command as used above beging numbering with 100 and
continues in increwents of 10. If you like, you can change the initial number

"and the increment to any integer value (up to 32747). Enter NEW and enter the

following command.
NUM 3,5

Now anter the same program as above, changing the second line to GOTO 3. When
line number 13 is generated, just press ENIER. Your program should look like
this.)

3 PRINT "BASIC COMPUTER"
8 60TO 3

You have probably discovered that the first number after the word NUM
~indicates the initial line and that the second rumbar (after the comma)
ipdicates the intrement bétween all the line numbers thereafter.

Now suppose you want to change the initial line and increment of the line
numbers of this program. Rather than taking the time to enter the program
again, you can use the RESEQUENCE command to change the line numbers. Enter

the command RES and list the program. It now looks like this.

+

100 PRINT “BARSIC COMPUTER"
" 110 GATG 100

Page 13

0318P TI-99/2 #Hook 3 Advanced broll Programming

Notice that the line numbers start at 100 and continue in increments of 10.
Notice also that the line number referenced in the GOTO statement 13 changed
to match the new number assigned to the first line. This 15 done with any
other branching statement also, such as IF THEN, IF THEN ELSE. n~ ON GOTO,

Enter this command.
RES 1,2
List the program again.

1 PRINT "BASIC COMPUTER®
3 6OTO 1

As you can zee, the numbers following RES indicate the initial line and the
increment as they do with the NUM command. These numbers must be separated by

4 Ccomma.

If vou'use either NUM or RES without a specified initial line or increment,

the computer assumes an initial line of 100 and an increment of 10. You can
also specify one value but use the assumed value for the other. This works

with either NUM or RES. If, for example, you want the line numbers to start
at 10 and continue in increments of 10, you can enter this command.

RES 10
List the program again.

10 PRINT “BASIC COMPUTER"
20 GOTO 10

Because you have specified an initial value of 10 but have not specified an

increment, the computer assigns the number 10 to the first line and assumes an
increment of 10. To specify the increwent but use the assumed initial line,

enter the command below. Note the position of the comma. .

RES +50
List the program agaln.

. 100 PRINT “BASIC COMPUTER®
150 GOTO 100 |

The computer assigns the assumed initial line number (100) and continues at
the specified increment of 50.

Experiment with NUM and RES and use them as needed in your work with your
computer. For more details on these commands, refer 1o Book 4.

e

Page 14

O31uk 11-vY7/¢ bBook 3 wWdvanced brRWIL rrOgq cutiilng
Using READ and DATA Statements

There are three ways to assign values to variables in a BASIC program. The
LET or assigmment statewent and the INPUT statement have been discussed. The
RERD and DATA statements can also be used to assian values to variables. READ
and DATA are especially useful when there are many variables invalved in a
pProgram,

The READ statement assigns each variable in its variable list a value from the
DATR statement. The READ statement assigns the first value in a DATA
statement to the first variable in the variable list. The READ statement then
assigns each value in sequence in the DATA statement to each sequential
variable until all the variables in the list have been assigned. If there are
not enough values in a DATA statement, the RERD statement assigns values from

the next DATA statement. If some values in a DATA statement are not assigned,
the computer remembers the first unassigned value, which will be assigned by
the next RERD statement.

"~ Both the variables in the RERD statement and the values in the DATA statewment
are numeric and/or string variables, separated by commas. Values in DATA |
statements must correspond to the order and type of variables specified by the
READ statements. If the READ statement lists a numeric variable, a numeric
constant must be in the corresponding position in the DATA statement. If the
READ statewent lists a string variable, a string constant must be in the
corresponding position in the DATA statement. Because a numeral can be a
valid string, a numeral can appear in a DATA statement where a string is

- required in the READ statement. If a DATA statement contains two consecutive
commasy a null string (a string with no characters) is assigned. *

READ A,B,C$
DATA 46,13,HELLD

In a DATA statement, leading and trailing spaces are ignored. QRuotation marks
are required for string constants that contain commas, quotation marks, of
leading or trailing spaces. If a string constant is enclosed in quotation
marks, each single quote desired within the string must be represented by a
double quotation mark in the statement. ”

DATA statements can appear anywhere in the program. Because DATA statements

- merely store values to be read by READ statements, DATA statements are not

" executed; the computer simply continues to the next statewment. It is good
programming practice to group DATA statements together either at the beginning

or at the end of the program.

The RESTORE statement is used to alter this sequential assigmment of values.
After a RESTORE statement is executed, the next READ statement begins
assigning the first value in the DRTB statement specified by RESTORE.

oy

Paga 15

0318P TI1-99/2 Book 3 Advanced BRSIC Prngramming

The program on the right causes
the computer to READ and PRINT
both numeric and string constants.
Data are stored in lines 100 and
110. Lines 120 and 130 read

the data and sequentially assign
the values 1, 2y 5y 3y -4y and XY
to the variables A, By Cy, Dy E, FS$.
Line 140 prints the values two

at a time.

Line 100 stores data that are read and
assigned to variables X and ¥ of line
110. Line 120 prints the values of X
and Y. Try changing the position of
the DATA statement. Put it after the
PRINT statement. You should get the

Same results.

Lines 100-130 read 3 sets of data
arnd prints their values, two to a

line. |

Lines 140-170Q0 read two sets of string
constants and print each set on 1its
own line.

Lines 180~190 store numeric constants
for variables B and C of line 110.
Lines 200-210 stare string variables
for C$ of line 150,

Page 146

“NEW

=100 DATA 1,2,5939-4
»110 DATA XY

»120 READ A,8,C

+130 READ D,E,F$

»140 PRINT A,8,C,0,E,F%
> RUN

1 2
5 3
-4 XY
¥% DONE %%
~NEW

»100 DATA 2,10
#3110 RERD X,Y
+120 PRINT X,Y
#RUN

2 10

%% DONE #%

~NEW.

100 FOR A=1 TO 3
+110 READ B,C
+120 PRINT B;C
»130 NEXT A .
140 FOR A=1 TO 2
>150 READ C$

>140 PRINT C$
»170 NEXT A

+180
»190
+200
210
~RUN
-9
8
5

DATA
DATRA
DATA
DATA

0

1
4

"‘5[0,9

1,2,4

“HELLO, BILt™
"HOW ARE ‘YOU?"

HELLO, BILL
HOW ARE YOU?

*% DONE **

0318P TI-99/2 Book 3 Advanced BﬁﬁIC Programming
+NEW

»100 CALL CLEAR
»110 PRINT “COMPARE PRICES OF
10*2“PRODUCTS IN TWO STORES

»120 INPUT "NUMBER OF PRODUCT
S (1-10) “:IN

+130 IF (N<1)+{(N+10) THEN 120

»>140 FOR S=1 TG 2

»»1580 PRINT “STORE™:S

+140 FOR P=1 TO N

»170 RERD ITENM

»180 PRINT ITEM;

»190 NEXT P

%200 PRINT I3

=210 RESTORE 240

220 NEXT S

230 DATA 7:10’11!2?134161!41
+56,29,78

+c40 DATA 9l14l19l24!29!39!55
y 30477

~RUN

COMPARE PRICES OF 190
PRODUCTS IN TWO STORES

NUMBER OF PRODUCTS (1-10) 3
STORE 1
7 10 11 @7 34

STORE 2
? 14 19 24 @28

% DONE #%

Page 17

oLt Ll oy i DLUOK TR . | [[N W T Y TR HA T
Using Functions in TI-99/2 BRSIC

The Basic Computer 99/2 has a set of built in instructions called fuypciiqns.
These built-in functions are classified as either numeric functions or string
functions. Numeric functions, which perform coamputations on numeric
expressions, can calculate routine mathematical operations much like an
advanced calculator. Stri..g functions operate on character strings to do
various string manipulations.

A function is always followed by an expression enciosed in parentheses. This
value within parentheses 1s called an arguyment. An argument is the number ar
string on which the function operates. Arguments used with numeric functions
can be single numbers, single variables, or expressions containing a mixture

of variables and numbers. Arguments used with string functions can be string

variables or string constants.

A function can be used in an expression in place of a variable. A function is
assigned a value when the expression is evaluated. The value of a function is
evaluated by the computer by performing a specialized operation on the numeric
exprassion or string expression listed as the argument. R function can never
appear on the left side of an equals sign.

Refer to Book 4 for information on other mumeric functions that can be used

with your computer.

Page 18

0318P TI-99/2 Baok 3 fdvanced BALIC Programming
Using Trigonometric Functions-—-5IN, COS, TAN, and ATN

TI-99/2 BASIC has four trigonometric functions. SIN(X), COS(X), and TAN(X)
calculate the sines cosine, and tangent, respectively, of X, where X 1s an
angle measured in radians. UWhen an expression containing one of these
functions is evaluated, the computer uses the numeric expression following the
function name to obtain the value of the argument} calculates the sine,

. cosiney or tangent of that values and uses that value for the function name.

For example, at line 140 the expreszion S*¥OS(X) is evaluated as shown below.

+150 X=20
160 L=5%C0S5(X)

Find the cosine of 20 radians (.40808204618)
Multiply the value of the function by § (2.040410309)

There hre 360 degrees ar 20 radians in a circle. If you prefer to work with
angles measured in degreesy you can convert degrees to radians as follows.

ol U .
dearees x or dearees X or deqrees x .01745329251994
360 180

. Tha ATN(X) function (arctangent) calculates the angle in radians whose tangent

is X. Ta convert the radians to degrees, multiply the function by 180/U or
57,29577?5131.

Page 19

Q3418P TI-99/2 Book 3 ARdvanced BRLIC Programming

The program on the right computes

the sine, cosiney and tangent of 45

degrees,

- This program converts the ATN of 1
back to degrees.

~NEW

»100 X=45%0,01745329251994
»110 PRINT SIN(X):COS(X) STAN(
R)
»RUN
.707106781¢
7071067812
1.

%% DONE %%

~NEW
»100 A=57.2957775131%ATN(1)
»110 PRINT 8
>RUN
45.

%% DONE ¥*%

Page 2(¢

O0318P TI-99/2 Book 3 Advanced BRLIC Programming
tIsing EXP, LOO, and SOR Functions
Other numeric functions include the EXP, LOGy and SAQR functions.

X
The EXP(X) function returns the value of e , where e=2./18281828. The
exponential function is the inverse function of the natural logarithm function
LOG. Thusy X=EXP(LOG{(X)).

The LOG(X) function returns the natural logarithm of the number specified by
the arqument X. The argument X must always be greater than 0.

The SGR(X) function calculates the square root of the arqument X. SQR(X) 1s
equivalent to X"(1/2). The value of X must be greater than O.

0318P TI-?9/2 Book 3 Advanced BRSIC Praogramming

The pragram on the right calculates +NEW
the EXP, LOG, and SQGR of the arguments
in parentheses and prints the answers. 100 AR=EXP(4)
»110 B=LOG(A)
=320 C=S5QR(B)
#3130 PRINT AIB:IC
~RUN
54.59815003
4
c

%% DONE *%

Page 22

O3183P T1-99/2 Book 3 Hdvanced BrRbLIL Pragvamming

Using String Functions—--STR$, CHR$, and LEN

STRE(A) or string-number function of A converts the number gspecified by the
argument A into a string. The argument may be any numeric expression. When a
number is converted into a string, the string is a valid representation of a
numeric constant with no leading or trailing spaces.

CHRS or character function returns the character corresponding to the ASCII
character code specified by the argument. If the argument is not an integer,
it is rounded to an integer. If the value of the argument is between 32 and
127, a standard character is returned. For values between 128 and 159y a
special graphics character is returned. The character codes for the standard

character set are listed in Book 4 (BASIC Reference).

LEN or length function returns the number of characters in the string
specified by the argueent. The LEN of a null string is zero. R space is a

1character and counts as part of the length.

Page 23

0318P TI-99/2 Book 3 Advanced BASIC Programming -

In the example on the right, note that
leading and trailing spaces are not
present in the number converted into

a string.

In line 100, the value of RA$ is
defined to be equal to CHR$(37). Line
110 prints A$ or X (37 is the ASCII
code for %X).

The value of B$ is "HELLO". “HELLOQ"

has 5 characters: therefore LEN(B®) is 5.

Page 24

> NEW

+10Q A=-10.2

»110 PRINT STRS(AY; ™

“RUN

%% DONE **
+NEW
100 A$=CHR$ (37}
»110 PRINT A$

~RUN
4

#e DONE **
SNEW
>100 B$="HELLO"
%110 PRINT LEN(B$)
*RUN

5

% DONE **

0318P TI-99’2 bBook 3 Rdvanced BASIC Pragrammlng
Review

Answer the following questions to review what you have learned so far.

1. Write a BASIC program using READ and DATA statements to print the
following.

HI.
MY NAME IS MARY.
AGE 10

2. UWrite the program lines missing at lines 110 and 140.

»100 FOR A=1 TO S
+110
=120 PRINT X
»130 NEXT A
140
»RUN
e
4
&

8
10

#% DONE %%

3. Urite a BASIC program that assigns a degree angle (R) and calculates 1ts
sine, cosine, and tangent. A is equal to 90 degrees.

4. Enter and run the following program. At the input prompt, enter 32. What
happens? Run the program several times, entering a different character code

number each time.

y

»100 INPUT A
»110 PRINT CHR$(R)

Page 25

0316P TI-9%/¢ Book 3 fAdvanceu onall Programming

G. Write a BASIC program that prints the following result. Hintl Use READ
and DATA statements and the CHR$ function. Refer to the ASCII Character Code
chart in Book 4.

+

i

*% DONE **

4. Fill in the blank.

al

b)
c)

d)
e)

f)

h)

1)

The ___ function returns the number of characters in the

~string specified by the argument.

statements can appear anywhere 1n a program,

X"(1/8) is equivalent to __________(X}).

is the invers- of the LOG function.

el S AN Witk N - S S i el

(X) calculates the angle whose tangent is X.

The STR$ or string—-number functin convertis the number specified by

- the argunent into & o e

The ______ statement tells the computer to look at values in the
DATA statement. -

______ statements alone do not cause the computer to do anything,
because they merely store values to be read by the computer.

iy

Three statements assign values to variables in a BASIC program} they ..
are the _____ statement, the ___._._ statement, and the ______
ard ______ statements.

Page 26

0318P TI-99/2 Book 4 wdvanced BALIL Programming
Using Subscripted Variables

Until now, all of our programs have used only simple variables. These have
consisted of the letters A-Z, the digits 0-9, and the dollar sign (used only

to denote a string varliable).

Let's look at a new type of variable. Enter the following into your computer:

DIM A(4)

This statement, the DIMENSION statement, tells the computer tp reserve space
for four values to be assigned to the variable A. It sets the dimension 1in
the computer's memory for this variable group. Now enter the following
statements.

A(1)=10
A(2)=15
R(3)=20
A(4)=a5

Each of these variables is a subscciepted variahle. Although they look
different from anything you have seen 30 far, they may be used in exactly the
same way as simple variables. To illustrate that this is true, enter the

following:

PRINT A(2),A(4)
PRINT A(1)4A(3)
PRINT A(2)*A(3)
PRINT A(4)/A(1)

In each case, you get exactly the same result as you would have if you had
substituted W for A(1), X for A2), Y.for AR(3), and Z for A(4). But if both
simple and subscripted variables may be used in exactly the same way, what is
the difference? What is there about a subscripted variable that makes it

unique?

The most obvicus difference is in the way it is written. Notice that the
subscripted variables all share a common name, in this case A. Had you used

simple variables (W, X, ¥, and Z), each variable would have a separates unigue

" names ' This may not seem very important at first, but it proves to be

extremely useful.

Page 27

= o e wms 1 [

What 15 an Array?

R set of subscripted variables sharing the same name 15 called an yrray. The
easiest way to picture an array is to think of i1t as a box divided into
separate sections, or elemenis.

The DIMENSION statement reserves a specified number of elements tor a
particular array. The DIM statement tells the computer the maximum value that
a suhscripted variable in an array can have. You must have a DIM statement in
vyour program before any reference to a subscripted variable from thal array.

The DIM statement has the form:

DIM array-pame{ipieger’

The following DIM statement tells the computer that &6 is5 the largest subscript
allowed in array X. -

DIM X(&6)

If you try to use 7 as a subscript for array X, an erroc message 1s
displayed. You can reserve more space than is actually needed for an array
with vyour DIM statement. Houwever, reser''ing much more memory space than is
needed for the array is a wasteful programming practice because that memory
cannot be used for anything else.

The box itself represents the array, and the individual elements represent the

subscripted variables within the array.

Array X
L$1) 1(2) X(3) X(4) X<5) - X(R)
Firgst Secaond sas .an .o Sixth
Element Element Element .

The array as a whole is referenced by an acray._pames in this case X. From
using simple variablesy; you know that any variable must have a unique name,
one that distinguishes that variable from. all others in that program.

Before you can identify any particular variable in an array, you must know two
things: the name of the array and the elewr 1t containing the variable. This

is exactly what a subscripted variable identifies. X(1) references the first
element in array X, X{(2) the second element, and X(é) the sixth slement.
Thus, the subscript is used to tell us which element contains the variable we

are interested in.

Page 28

0318P T1-9?Y/24 Book 4 Advanced BrRSIU Programming
What Kinds of Exprassions Can Be Used as Subscripts?

A constanty numeric variable, or numeric expression may be used as a subscript.

Coasianls X(1)
X{5)

Nuperic VYariables Assuming you have defined A=1l, B=2d, and {=3, the following
are permissible.

X(A)=X(1)
X(B)=X(2)
X(C)=X(3)

Any numeric variables used as a subscript must be simple variables. That 1is,
they cannot be subscripted variables themselves.

Numeric Expressiong Again, assuming A, B, and C have been defined, the
following are permissible.

X(243)=X(5)
X(2+8)=X(4)
X(B*C)=X(6)

So far we have only shown examples of integer expressions being used as
subscripts. Using our picture of an array as a box, it is easy to see that

"although we may have a lst element or even a 101st element, the i1dea of a

1.4th element or a 6.3th element just doesn't make any sense. Therefore, the
only valid subscript recognized by the computer is an integer. However, the
computer accepts fractional expressions, automatically rounding the expression
to obtain an integer. Enter the following:

X(4)=10 _
PRINT X(&.3) ~
10 '
Notice that X(&.3)=X(&).

Page 29

0318P TI-99/2 Book 3 Rdvanced BASIC Programming
Using FOR-MEXT Loops with Arrays

RBecause an array is usually a sequential set of subscripted variables, every
alement in array X may be accessed by beainning with X(1) and incrementing the
subscript by 1. This aperoach is ideal for use with the FOR-NEXT loop.
Suppose you want to input data into the first 4 alements of array X. Enter

the following program segment.
~NEW

»100 REM ENTERING DATA INTO AN ARRAY
+11Q0 DIM X(4)

»120 FOR J=1 T0 4

»130 INPUT X(I)

#1140 NEXT J

Following through the program, you can see how useful the FOR-NEXT loop
hecomes. On the first pass through line 120, the computer assigns a value to
X{1). On the second pass, a value is assigned 1o X{(2)y and so on until a
value is assigned to X{(4).

The FOR-NEXT loop may be similarly used to sequentially print ar array.
Suppose we now want to print the values that were input abhove. Lnter the

following program segment.

. »150 REM PRINTING THE ARRAY
»140 FOR J=1 TO 4

170 PRINT X(J)

180 NEXT J

As you can sae, anytime you are dealing with a saquential set of subscripted
variables, the FOR-NEXT loop 1is an convenient, @asy way of manipulating the

Array.

-y

Page 30

. - T

A e

0318P TI-99/2 Book 4 #wHdvanced BRHIC Pragiamming
Why Do We Use Arrays?

Every variable in a program must be referred to by a unique variable name,
When you are working with a large number of variables, providing a separate
name for each can quickly make the simplest programe large and unmanageable.
Also, the program must explicitly refer to each different variable name.
However, by assigning data to the elements of an array, you need only use a
gsingle array name followed by a unique subscript. Additionally, because the
subscript is a numerical value, it may be easily manipulated by the computer.

The following program is a simple program for computing the average test grade
of a class containing N students.

NEW

+100 REM TEST ORADE AVERAGES

+110 INPUT “NUMBER OF STUDENTS"IN
»120 SUM=0

#1130 FOR K=1 TO N

- 140 INPUT “GRADE "IGRADE

»150 SUM=SUM{GRADE

7160 NEXT K

»170 AVE=SUM/N

180 PRINT "THE AVERAGE GRADE IS "jAVE

At first glance, it may appear as though the variable GRADE contains N

different grades, However, this is not the case. At any particular time,
GRADE contains only one value. On each pass though the FOR-NEXT loopy a new
value is input to the variable GRADE, replacing the previous value. Though
the previous value is included in the cumulative tatal in SUM, it is has been
lost as an individual valuve. For instance, once the 8th grade is replaced
with the 9th, we can never know the exact value of what the the 8th arade is.

Suppose we wish tp print out each grade alona with its deviatios from the

averaae. Because we must have access to each grade after the average is
computed, each grade must be assigned to a separate variable. We could assign
the first student's grade to Gi, the second student's grade to (52, and sa on.
For exampley suppose there were five students. -

- »NEWT

>10Q0 REM TEST GRADE AVERAGES AND DEVIATIONS
»110 INPUT “GRADE *:G1

»120 INPUT “GRADE “:62

»130 INPUT - *GRADE “:G3 = g
140 INPUT “GRADE ":64

5150 INPUT "GRADE "“:GS

~160 SUM=0G1+G24634G4+G5

»170 AVE=SUM/S5

»180 PRINT "THE AVERAGE GRADE IS ";AVE
»190 PRINT “GRADE ="3G1,"DEV ="3;G1-AVE
»200 PRINT "GRADE ="3;G2,"DEV ="3;G2-AVE
>210 PRINT “"GRADE ="3;(33,"DEV =";G3-AVE
»220 PRINT "GRADE =*3;G4,"DEV =";04-~AVE
»230 PRINT “GRADE ="3;G65,"DEV =“3jG5-AVE

Even with nﬁly five students, it is easy to see how large and complicated this

program would become if there were forty students, or one hundred. Even a
program for such a simple purpose as this would quickly get out of hand.

Page 31

Q318P TI-99/2 Book 3 Advanced BARLILL Programming

An array offers an ideal solution. Instead of assigning each grade to a
separate variable, let's assign each grade to a subscript of an array named
GRADE. The following program could easily be set up for any number of
students, and it is still two lines shorter than the previous program for only
five students.

~NEW

=100 REM TEST GRADE AVERAGES AND DEVIATIONG
#1100 DIM GRADE(S0)

»120 INPUT "NUMBER OF STUDENTS "IN

»130 SUM=0

#1400 FOR K=1 TO N

+150 INPUT “"GRADE “IGRADE (K)

»160 LET SUM=SUMtGRADE(K)

#1700 NEXT K

+180 LET AVE=SUM/N

>180 PRINY “THE AVERAGE GRADE IS ";AVE
»190 FOR K=1 TO N

200 PRINT “GRADE= "3;GRADE(K),"DEV= "3;GRADE (K2-AVE

»210 NEXT K

Searching an Array

One of the most common problems encountered in dealing with arrays is the need
to search the array to determine if a particular data item is present. You
may also wish to know how many times the item is present and in which of the
array elements it is located. -

Suppose we wish to search an array 30 items to determine whether a given
item, TARGET, is present. To begin, we mu:* instruct the computer to compare
TARGET against the item in the first element of the array, and, 1f the two are
aqual, to print the element number. Next, compare TARGET against the second
element and repeat this process until every element has been checked.)

Assuming that values have already been assigned to both the array X and the
variable TARGET, the following program segment may be used for the searcha

GNEW

»100 REM SEARCHING THE ARRAY

»110 FOR K=1 TQ 30

»120 IF X(K)=TARGET THEN 13" ELSE 140
»130 PRINT "TARGET IS IN ELEMENT "3K
»140 NEXT X

On the first pass through line 120, X(1) is compared with TARGET. If ‘he two
are equal, the program continues to linc 130 and the subscript aumber is
printed. If the the two are not equal, the program passes to line 140. The
FOR-NEXT loop is then incremented and TARGET is compared with X(2). This
repeats until the entire array has been checked.

Page 3¢

Tran

0316P TI-99/2 Book 3 RAdvanced BRASIC Programming
Using Two-dimensional Arrays

Thus far you have studied arrays that are "one-dimensional," that 1s, a single
list of values assigned to a variable. Sometimes a one-dimensional array of a
1ist is not suitable for storing a set of data. Some groups of data are
better arranged in rows and columns (as in a table) than in a list. In
TI-99/2 BASIC, an array can be expanded to two dimensions (with two
subscripts) to hold the values in a table. The first subscript denotes the
row where an element is located and the second zubscript denotes the column

where an element is located.

As a simple example, the multiplication table for the first five counting
aumbers is shown below. You can use a two-dimensional array to store the

values in the table.

Tf we call the array M, vou can refer to any element in the array by typing M
followed by the element's row and column in parentheses. To reference the

alements in the second row of the array M:

M(2,1) refers to the element in the second row and the first column,

which has a value of 2.
M(2,2) refers to the element in the second row and the second columny

which has a value of 4.
M(2,3) refers to the element in the second row and the third column,

which has a value of 4.

M(2,4) refers to the element in the second raw and the fourth colunn,
which has a value of 8.

¥(2,5) refers to the element in the second row and the fifth column,
which has a value of 10.

As with one-dimensional arrays, the subscripts here could also be variables.

Any valid operator can be used on the elements of multidimensional arrays.
For example, you can use the arithmetic and the relational operators on)
elements of numeric arravys. You can use the concatenation operator (&) and

the relational operators on elements of string arrays.

To access the elements of a two-dimensional array, you will often use nested

- FOR-NEXT looes. The outer FOR-NEXT loop can be used to access each row of
- ‘sleménts and the inner loop can be used to access each element 1n a row.

The program on the right shows how to use a two-dimensional array to display a
multiplication table (up through 49 values). The auter FOR-NEXT laoop controls
the row subscript. The first time through the loopy, the row subscript is 1.
The inner loop then increments the column subscript to define each element 1in
the firet row. Then the outer loop increments to the second row and the inner
loop defines each element in that row. The two loops continue until each

element in each row is defined.

Now suppose you want to search the array for the number of times a given
number occurs in the table. By adding lines 210-290, you can input a number
to be searched for, use two FOR-NEXT loops to compare each element in the
array with the input number, and print the number of times the input number

occurs in the array. =

Page 33

0318P TI-$¥9/2 Baok 3 Advanced BASIC Programming

COLUMNS

oll2.t_ 3.t 4! §!

gy i pp-ad e - 3+ T -1 r ! 1 1t : __ _:B 1 ¢ . 1| 1 [_ . E__ 1 [1 L _J L . L .. 1 1§}

R b - SN SEND ASRUUI - SO W< NN SO S-SR - I
0 el e i...4 L & 1 8 1 101
W il S SRS SR - SOV SR, NS SR V- WD S 1 - 2
S S A4 1 g ‘128 ! 14 . .20 .

ia_l ooS.al.-10 2 15 20 1 @8 !

~NEW

+100 REM TWO-DIMENSIONAL ARRA
Y

»110 DIM M(7,7}

¥120 INPUT "ENTER NUMBER, 1-7
: ":NUMBRE

#130 FOR ROW=1 TO NUMBRE

»140 FOR COL=1 TO NUMBRE

150 M(ROW,COL)=ROWCOL

»160 PRINT M(ROW,COL);TAB(COL
*4)3

»170 NEXT COL

»180 PRINT

»190 PRINT

»200 NEXT ROW

»210 COUNT=0

»220 INPUT "SEARCH FOR WHAT N
UMBER?: “STARGET

230 FOR ROW=1 TO NUMBRE

=240 FOR CDL=1 TO ' NUMBRE

»250 IF M(ROW,COL)<>TARGET TH
EN 270

260 COUNT=COUNTH

#@70 NEXT COL ;

280 NEXT ROM

290 PRINT TARGET; "APPEARS"FC
OUNT; “TIMES" -

Page 34

0318PF T1-9v/2 Book 3 Advanced BALIU Frogiamming
Using Threefdimensinnal Arrays

Sometimes even two-dimensional arrays are not suitable for storing the values
of certain groups of data. For example, suppose a company keeps a sales
record for each of its salesmen. Each sales record contains the number of
jtems sold and the price per unit for each item. In addition, the company
needs to record the revenue each salesman produces for each item s01d.

Suppose the salesmen are assigned numbers as shouwn below.

i Jones
c Smith
3 Anderson
4 Beebe

The items sold and the prices per unit are listed below.

1 shirts- 20.00
c slacks- 24.00
3 shoes- 6&5.00
4 socks—- 1.28

A one-dimensional array can be used to store the price of each item.

PRICE(L) 20.00
PRICE(2) 24.00
PRICE(D) 65.00
PRICE(4) 1.25

" The sales records for the four salesmen are listed below.

ST W | 1 . HO N ——

SALESMAN 1 2 3 4
1 200 250 300 500

2 300 150 375 235

3 200 540 670 344
g 245 680 = 456 8AS

To store the number of items sold by each salesman, we will use a
two~-dimensional array, where the first subscript denotés the salesman (1-4)
and the second subscript denotes the item sold.

For each element in the table (or two-dimensional array) of the salesmen’'s
records, we must compute and store the revenue generated by each salesman for
each item. All of these revenue values can be thought of as written on a
page. Because we need only one computed value for each element in the table,
we need only one page. This page can be stored by adding another dimension to
the array. We need a value of 1 for this third dimension. If we needed to
compute and store another value, we could increase this third dimension by 1.

e ran store the revenue for each item sold by each salesman as shown i1n the
program segment on the right. We will also print the values being stored.
With TI-99/2 BASIC an array can have a maximum of three dimensions, ar three

subscripts. .

Page 356

0316F TI-92/2 Hook 3 Advanced BASILU Programming

~NEW

+100 REM THREE-DIMENSIONAL AR
RAY

+110 DIM PRICE(10),QUANC10,10
) yREV(10,10,1)

+120 INPUT "ENTER # OF ITEMS
IN RECORD: “:ITEMS

»130 FOQR ROW=1 TO ITEMS

»140 INPUT "ENTER PRICE OF IT
EMS: ":PRICE (ROW)

-»180 NEXT ROW

+160 PRINT

»170 INPUT "ENTER # OF SALESM

EN: ":IMEN

=180 PRINT

=190 FOR SHAN=1 TD MEN

»200 PRINT “SALESMAN *j;SMAN; "

RECORD"

~210 FOR €COL=1 TO ITEMS

»220 INPUT "ENTER QUANTITY S0
LD OF ALL ITEMS: ":QUAN(SMAN
y COL)

230 NEXT COL

240 PRINT

>S50 NEXT SMAN

»260 FOR SMAN=1 TD MEN

+270 PRINT "RECORD FOR SALESM
AN " ;SMAN

=280 FOR COL=1 TO ITEMS

290 REV(SMAN,COL,1)=PRICE(CO

+L) #QUAN (SMAN, COL }

+300 PRINT “$";REV(SMAN,COL,1
)3

»310 NEXT COL

»320 PRINT

+330 PRINT

+340 NEXT SMAN

Page 34

U3l 1Ll-YY/¢ Wook 4 Rdvanced bBrHLIL Frogy amming

Review—--Answers are on page XX.

1.
Ce

c

9.

5a
&
7
8.

10.

11.

Why should arrays be uged when vyou are processing a large number of
varliables?

The character that is enclosed in parentheses after an array hame is
called & __ . __.

To access an element in an arrayy, you must know what two things.

A subscript may be & o 8 B ey OOF
an
In TI-99/2 BASIC, the maximum pumbec of subscripts 1S oo

Each subscripted variable in an array is called an o ___& "~
What is the difference in an array named A and an array named A$§?

If you type A(2,3), uwhich element in array f are you accessing?

What statement is used to reserve space for an array?

If you have entered the statement DIM A(15), can you use 20 as a subscript
for the array A? -

Write a program that accepts a digit from 1 through 5 from the keyboard
and then spells that digit.

Page 37

0318P TI-99/2 Book 3 Advanced bRLIC Progrramning

NEW

*100
»110

REM USING A SUBROUTINE
INPUT "ENTER DATA IN MM/

DD/YY FORMAT: ":DATES

»120
+130
~140
2150
+160
#170
+180
+190
+200
~210
220

AS="BEGINNER'S BRSIC"
PCOUNT=143

GOSUB 220

PRINT DATES

GOsu8 220

PRINT "TITLE: "iAR$
PRINT "PUBLISHED BY TI*
PRINT PCOUNT; " PAGES"
GOSUB 220

sSToP -
REM SUBROUTINE TO PRINT

FILLERS ON A PAGE

+230

»240 PRINT “% % % % % % % % %

PRINT

% % % % x4

250

PRINT " % % % % % % % %

* % % * %

»260 PRINT
~270Q RETURN

Page 39

- 0318BP T1-99/2 Hook 3 Advanced BASIC Programming
~NEW

»100 REM BUILD AN ARRAY,
MULLTIPLY EACH ELEMENT BY 3,
PRINT BOTH ARRAYS

»110 FOR X=1 TO 4

»120 FOR Y=1 TO 7

+130 I(X,Y)=INT(30%RND)+1

»140 NEXT Y

+160 NEXT X

»160 PRINT *FIRST ARRAY":

»170 GOSUB 240

»180 FOR X=1 TO 4

+190 FOR Y=1 TO 7

5200 T(X,Y)=3*I(X,Y)

210 NEXT ¥

»B220 NEXT X

»230 PRINT *3 TIMES VALUES IN
FIRST ARRAY"::

»P40 GOSUB 260
»>250 STOP

»260 REM SUBROUTINE TO PRINT
ARRAY

»870 FOR X=1 TO 4

*280 FOR Y=1 TO 7

»290 PRINT I(X,Y);

+300 NEXT ¥

»310 PRINT

»320 NEXT X

»330 PRINT

»340 RETURN

»RUN
FIRST ARRAY

16 12 17 12 8 17 8
18 22 1 29 16 14 11
5 285 22 4 249 11 24
26 21 18 2 12 20 15

.3 TIMES VALUES IN FIRST ARRA
; -

48 36 S1 36 24 51 24
S4 46 3 87 48 22 33
15 75 &6 12 72 33 7@
78 43 54 & 36 60 45

C®% DONE *%

Page 40

0318F TI1-9Y/2 Book 4 wdvanced bproil Frogiammling
Debugging Your Programs

You may find that when you enter and ru:.. program, 1t does not ..k as vou
intended. The problems you have in your program are called logical erraors ory
in computer usage, "bugs.® Testing your ~rogram to discover these logical
errors or bugs is called debugging a program.

When you have bugs in a program, remember that the computer does exactly what
vou tell it to do. Think about the thinge that could be causing the errors
and try to devise tests to find these errors,

One technique that you can use is to follr . the flow of your program, line by
line, and on a sheet of paper, write the values of variables at each line.
Another technique is to insert lines at various places in your program to
print the values of variables.

Debugaging Aids

TI~99/2 BASIC has a number of aids that you can use to help vou find program
errors.,

The BREAK Key

The BREAK key can be used to stop program execution and allow you to print or
change the values of variables. When the BREAK key is pre-sed, the pragram
halts program execution and the message BREAKPOINT AT line-pumber is
displayed. The BREAK key is especially useful when your program gets in an
infinite looe.

The BREAK Statement

The BREAK statement can be used to cause your program to halt at specific
points in your programy in order to enable you to print or change the valuyes
of variables. X

- 230 N=ATCH*3
T 240 IF(N:5) THEN 270 .

In the program sectién aboves you can cause the program to halt before and
after the IF statement is performed by using the BREAK statement. The
following program sections show two ways of using the BREAK statement.

g

Page 41

O318P T1-99/2 Book 3 Advanced BASIC Programming

~»85 BREAK 240,250

>230 N=A$CH3 >230 N=A}CH3
235 BREAK |
»240 IF(N<S) THEN 270 »240 IF (N<5) THEN 270
245 BREAK
250 X=R.54C +R50 X=2,54C

The section on the left has two BRERK statements inserted in the program at
lines 235 and 245. When lines 235 and 245 are encountered, the program halts
and displays a message infarming you at what line the break accurred. You can
print the values of variables ar change their values during this break.

The section on the right has one BREAK statement inserted at the first of the
program. This BREAK statement does not cause a break to occur at line 5. It
sets breakpoints ivmediately before the lines that are specified in the BRERK
statement. In this case, line 5 sets breakpoints before lines 240 and 250.
Therefore, a break occurs before lines 240 and 250 are executed and You can
print the values of variables or change their values at that time.

You can also use the BREAK statement at the same places described above by
entering the BREAK statement in the Immediate Mode, before you RUN the program
aor when you are in the middle of a break. Using BREAK in the Immediate Hnde

is shown belaw.

BREAK 240,250
RUN '

The CONTINUE Command | %

After you have checked the values of variables during a breakpoint, you cén
resume program execution by entering the CONTINUE (or CON} command. Note that

you cannot enter the CONTINUE command after editing the program (addingy
deleting, or changing program lines).

The UNBREAK Command

The UNBREAK statement is used to remove breakpaints that you have set in your
program. Note that the breakpoints you can remove with UNBRERK are the ones
that are set as shown in the section on the right of the previous example.

The breaks that are set in the left section must be deleted from the program.

4+

(N

Page 4c

Wad daa e Tt bt b bt v vt L wd PR W S L W I S e Wb Al e

The TRACE Command

The -TRACE command is used to see the order in which your program lines are
executed. After the TRACE command iz entered, the line number of each program
line is displayed before the statement is perfarmed. TRACE may be enterad as
a program line or in Immediate Mode. In the example below, the TRRCE displays
the line numbers 230 and 240. If the condition in line 240 is tru2, the next
line number displayed is 270. Otherwise TRACE dizplays 250.

~2eb TRACE
»230 N=A$C%3
240 IF(N<S) THEN 270

XX BETTER EXAMPLE NEEDED

TRACE is especially useful in finding infinite loops. The TRACE command 13
cancelled when a NEW command or the UNTRACE statement is executed.

The UNTRACE Command

UNTRACE is used to cancel a TRACE that is heing performed. UNTRACE nmay be
used in a program line or 1in ime_diate mode.

Page 43

O318P TI-99/2 Book 3 RAdvanced BASIU Programming
Using Subprograms-—Graphics
XX Update for real character set-—add NEW command

TI-99/2 BASIC has the standard ASCII character set and a group of special
graphice characters that are listed in Appendix XX (Book 4). The following
program uses the special graphics that are defined for your computer. The
program is separated into small parts, which are described 1in order to help

you learn how to use the special graphics in a program.

This program places a square in the middle of the screen and then starts a
rocket up the left side of the screen, turns it to the right at the top of the
screeny and begins firing arrows at the square. When the arrows hit the
square, blocks of the square begin falling off until the block disappears.

The rocket then falls to the ground and explodes. R1l of the special graphics
characters that are available on the TI-99/2 are then displayed. |

-

AN N3
3636 36 36 D606 36 2% 2696 36 3 %
6363636 3¢ NN

The following stateﬁent is used to define a variable that determines the
length of time a symbol is displayed before it is erased. PAUS is used by the
csubroutine at line 1100 to determine how many times the subroutine performs a

looe.
" »170 PAUS=30

T3 3696 -
JE96 36 H16 36 2 3696 338 326 6%
6366 23 -3¢

Before any characters are displayed, the screen is cleared.

»180 CALL CLEAR - | -
P16 366 93¢

36 3036 36 I 36 Y M 96 36 3¢ 3¢
P& 36 306 9 €

The large square (code 97) graphics symbol is displayed in the widdle of the
. ‘séreen. | | |

>190 CALL HCHAR(12,14,97)

I 3 3¢
369636 2696 36 363 36 306 396 -8
A6 36

Page 44

yualafb LY., o [TV) Find'w o b it b nd hfL CE ol M o

The loop in the following section displays the rocket ship (code 20} starting
at the 20th row and the 3rd column. The GOSUB 1100 transfers to a subroutine
in the program that is used to keep the graphics s,mbol displayed for a
specific length of time before it is erased. PAUS is used in the subroutine
to determine how many times the subroutine performs the Loop; in this case
PAUS has a value of 30. When the subroutine finishes, the symbol is erased
when the space character (code 32) is displayed at the location nf the rocket.

=200 FOR ROW=20 TO 3 STEP -1
210 CALL HCHQR(RUU.S;EO,I)
»ee0 GOsUB 1100

»230 CALL HCHAR(RDW,3,3cy1)

»240 NEXT ROW
33626 9496 X 3¢

64696 HIE J6 3 36 36 e I Fe 36 36
¥6 36 396 363 3

When the rocket reaches the top of the screen, the rocket that is pointed to
the right (code 21) is displayed. The loop moves the symbol from column to
column across the 3rd row. In each column the rocket is displayed while the
pause subroutine goes through its loop. The rocket is then erased in each
column by displaying the space character in its location.

>280 FOR COL=3 TO 14
»260 CALL HCHAR(3,COL,21,1)
@70 G0SUB 1100

- »280 CALL HCHAR(3,COL,32,1)

»290 NEXT COL
396396 6.9

6 S - IEI6 26 3 36 316 -2 26
Y3 2 38 3 %

When the rocket is over the square, the rocket that is pointed downward (code
19) is displayed. Note that the pause variahle used by the subroutine is
three times as long as before. "

»300 CALL HCHAR(3,14,19,1)
»310 PAUS=90

»>320 GOSus 1100
P24 38 26 39

36306 Y38 T F6 3 6 3696 36 9 2 ¢
P66 % 3 96 3¢

FIRE is a subroutine that displays the downward arrow (code 26) moving toward
the square.

»330 GOSUB 1200
. BRI

HEFE 6 T JE 3 18 e 7 WM
0 36 36 3 33

o

When the square is hit by the arrows, the square breaks apart and a portion of
the square (code 99) is displayed in the middle of the screen.

+340 CALL HCHAR(12,14,9%,1) -

Page 45

0318P T1-99/2 Book 3 Advanced BARASIC Programming

Y636 3 36 3 -5
P 300k 36 3636 96 33 3 3¢ 33 3 3%
HE9E 396 2

This next section of code displays the fragments of the box (code 100> falling
down the screen. Each fragment is displayed while the pause subroutine goes
through its loop 30 times. The fragment is then erased with the space
character and displayed at a new location.

»350 CALL HCHAR(12,13,100,1)
»360 PAUS=30

370 GOSUB 1100

+380 CALL HCHAR(12,13,32,1)

390 CALL HCHAR(12,12,100,1)
»400 GOSUB 1100

410 CALL HCHAR(12,12,,32,1)
»420 CALL HCHAR(13,11,100,1)
»430 GOSUB 1100

440 CALL HCHAR(13,11,32,1)

»450 GOSUB 1100
| A2

63 3 696 236 3 36 3 26 T 3 6 9%
363 76 3 256

When the fragments have disappeared, the rocket begins firing again.

>460 GOSUB 1200

¥ 2096 9636 ¢
34363 63696 36 696 366 -6 3¢ ¢
F6 336 3% %3¢

As the arrows hit, the portion of the original square is replaced with a
smaller portion (code 107). Again small blocks (code 98) fall from the - |
square. The blocks are displayed while the subroutine loops 30 times and are .
then erased.

470 CALL HCHAR(12,14,10/7,1)
»>480 CALL HCHAR(13,15,98,1)

%490 GOSUB 1100 |

»500 CALlL HCHAR(13,15,32,1)
»510 CALL HCHAR(14,146,98,1)
»520 G0SUB 1100

=630 CALL HCHAR(14,14,32,1)
»540 CALL HCHAR(16417,98,1)
»5880 GAOSUB 1100

540 CALL HCHAR(16,17,32,1)

~»570 GOSUB 1100
336 636 36 396

36 3636 36 FEIE 36 2 3 I8 36 3 %
3% 3% 3 3 96 3

Page 44

v Al

. 1 e L_"..._ -% '

= ab L S T W R 3 IR RIY F TR Ny |

Af ter the blocks have disappearedy the rocket fires agéin.

~580

When the arrows hit, the square is erased and two pilec.

GOSUB 1200

2.2 5 L RS

26350 3626 36 b 92 3 I 306 P

63696 969 3 W

square are displayed srlitting apart and falling.

590
600
610
+620
+630
+640
650
660
670
680
5690
700
»710
720
730
740
»750
3760
770
»780
790
>800
>810
820

CALL HCHAR(12,14,32,1)
CALL HCHAR(12,15,98,1)
CALL HCHAR(13,13,98,1)
GOSUB 1100

CALL HCHAR(12,15,32,1)
PAUS=10

GOSLB 1100

CALL HCHAR(13,13,32,1)
CALL HCHAR(14,12,98,1)
CALL. HCHAR(13,14,98,1)
PAUS=30

GOSUB 1100

CALL. HCHAR(14,12,32,1)
PAUS=10

GOSUB 1100

CALL HCHAR(13s14,32,1)
CALL HCHAR(146,11,98,1)
CALL HCHAR(14,18,9841)
PRUS=30

GOSUB 1100

CALL HCHAR(16,11,32,2)
PAUS=10

GOSUB 1100

CAll HCHAR(14,18,32.2)

+830 PAUS=30
>840 GOSUB 1100
»850 (GOSUB 1100
>8460 CALL HCHAR(3,14,3¢,1)
P96 16 2636
36 3696 36963616 -6 636 36 96 6%
236 996 3 35

(code $8) of the

Af ter the square disappears, the rocket falls to the bottom of the screen.
The rocket pointed to the right (code 21) is displayed in the 14th column of

each row, starting at row 1.

»870 FOR ROW=1 TO 20 ,
»880 CALL HCHAR(3{ROW,14,21,1)
»890 GOSUB 1100

»900 CALL HCHAR(3+ROW,14,32,1)
»210 NEXT ROW

#9220 PAUS=6

930 GOSUB 1100
TITEEE

36 3696 36 25 96 96 3 36 S 36 96 3636
T e M X

Page 4/

03168P Ti-99/2 Book 3 RAdvanced BASIC Programmning

Of ter the rocket reaches the bottom of the screen, all of the special graphics
characters are displayed in three slanted lines from the bottom of the screen.

»240 FOR ROW=1 TQ 9
36369636 6 -6

Y66 36 296 36 98 36 3626 36 I 3 %
656 JEN 2 2 9%

The following section displays graphics characters 0 through 8.

»950 CALL HCHAR (20--ROW, 14-ROW, -14R0W,1)
#2600 PAUS=460

970 GOSUB 1100
TP 963 3 -3¢

363636 26363606 06 96 A IR
363696 7% 3 %

The following section displays graphics characters 9 through 1/.

»980 CALL HCHAR(20-ROW,14,8+R0OW,1)

»990 GOSUB 1100
P 3600 06 46

9606 W W -HE U6 536 F00 36 2
k-3 3

The following section displays characters 18 through 2/.

»1000 CALL HCHAR(20-ROW,144ROW,17+ROW,1)
»+1010 GOSUB 1100

»1020 NEXT ROW
39 348 3 96

6 36 36 96 J6 FEIEIE 306 I3
9 3 -

This section displays graphics characters 96 through 111 at the bottom nfhthe} .
screef. ‘

»1030 FOR COL=1 TO 14

1040 CALL HCHAR(22,54C0L,954COL,1)
>1050 NEXT COL -

»1060 STOP -

- TR IE N 3
2696 I35 3636 3 96 3 ¢ 3636 3636
363 3 3¢ 3 ¢

This subroutine is used to display a graphics character on the screen long
*énough for it to be seen. You decide how many times the subroutine performs a
“loop by defining the variable PAUS before the GOSUB to line 1100 is

performed. The variable PAUS in effect determines how long a character 1s
displayed before it is erased.

Page 48

0318P TI-99/2 Book 3 wdvanced BALIC Programming

»1100 REM SUBROUTINE TO SIMULATE PAUSE
+1110 FOR Y=1 TO PAUS
#1120 NEXT Y

#1130 RETURN
I I 3¢

366 F696 96 JEE 3 2 26 3 22 2
93 39 6

This subroutine fires the arrows at the square.

1200 REM THIS SUBROUTINE FIRES ARROWS DOWNWARD
Three arrows are displayed in three rouws.

»1210 PAUS=ES

»1220 FOR ROW=4 TO 6

+1230. CALL HCHAR(ROW,14,26,1)
»1240 GOSUB 1100

»1250 NEXT ROW

The arrow is erased in row 4 and an arrow is added in row 7. The pause
subroutine causes a time delay between the erasure and the display to simulate
movement. The loop continues adding and erasing arrows until arrows are

displayed in rows 9, 10, and 11.

. #1260 FOR ROW=4 TO 8

%1270 CALL HCHAR(ROW,14,32,1)

: }1230 GOSUB 1100

»1290 CALL HCHAR(ROWH3s14,254.1)
1300 GOSUB 1100

»1310 NEXT ROW

The arrows in 9, 10y and 11 are erased in the loop below.

»1320 FOR ROW=9 TO 11

>1330 CALL HCHAR(ROW,14,32,1)
»1340 GOSUB 1100

%1350 NEXT ROW

#1360, PAUS=30

»1370 RETURN

Page 19

0318P TI-99/2 Book 3 #fdvanced BRLSIU Hrogramming
File Processing

Your Basic Computer 99/2 is equipped with a powerful programming tool: the

" capability of storing both programs and data on peripheral devices. Stored
programs can be loaded into memory and run. Data can be stored and programs
created to update these data. TI-99/2 BASIC provides an extensive range of
file-processing features.

A collection of data sent to a peripheral device is called a file. A program
may be saved on a memory storage device as a filey, and it is sent to a printer
as a file. A set of data that can be read, stored, and updated is also called
a file. Eile processipg is a term that refers to eprinting data, saving
programs, loading saved programsy deleting saved progransp and reading,
storingy and updating data.

Liiiina_a;ﬂnngnam_in_a_Erihiec

You have already learned how to list the lines of a program in wmemory to the
screen by using the LIST command. The LIST command can also be used to print
the lines of a program to a printer.*

LIST "HEXBUS.10" lists the program in wewory to
device #10 (the Printer/Plotter).

LIST "HEXBUS.20" lists the program in mewory to
- device #20 (which is attached to the

RE232 serial port).

LIST "HEXBUS.S0" ‘lists the program in mewory to
device #50 (which is attached to the
RS232 parallel output port).

LIST “HEXBUS.ld".BO-150 lists lines 80 through 150 to the
Printer/Plaotter.

LIST “HEXBUS.20.8=4800,N=10",200- lists lines 200 through the end of
| the program to device #0. Software
options required to match the device
characteristics are specified.

Réfef ib the RSEQE and Prfnter/Plutteﬁ peripheral manuals and other
appropriate peripheral manuals for information on software options.

*NOTE: The word HEXBUS is not hyphenated in a command or statement input to
the computer.

fayipa_a_Proarcam

The SAVE command is used to write a copy of the program in memory to a
™

peripheral device such as the Waferlaee Driﬁt or an audio cassette
recorder. You can load this saved copy by using the OLD command.

™ _
Saving a Program on a HEX-BLIS peripheral

e ™
If you are using a new storage medium such as a Waferiaee cartridgg,_yug |
must initialize it before you can write programs and data to 1t. Initializing
storage media is discussed later under “"Initializing a Storage Medium on a
™
HEX-BIS Peripheral.”

OI18P TI1-99/¢ Book 3 Advanced BRw.L rrogrammlng
The'farmat for the SAVE command is

SAVE HEXBUS.devace-pumber.filename

To SAVE the program in memory named MYPROG to the cartridge in device 1, the.
SAVE 1is entered as shown below.

SAVE HEXBUS.1.MYPROG

The program is written to and stored in the cartridge in device 1 with the
filename MYPROG. When you save a program on a tape that contains other
programss be sure to assign to the program in memory a filename that does not
already exist on the tape. Otherwise, the program on the tape 15 erasad.

Saving & Program on a Cassette

The SAVE command is also used to save a program t0o a Tl Program Recorder or a
compatible recorder cassette recorder. The form for this command is

SAVE CS1

When the SAVE £S1 command is entered, the computer prints instructions on the
screen to tell you how to use the recorder. Follow the directions as they

appear on the screen.

Af ter the program has been copied, the computer asks if you want to check the
tape to be sure your program was recorded correctly. If you press Ns the
flashing cursor appears at the left of the screen. You can then type any
BASIC commmand. If you press Y, directions for activating the recorder appear
on the screen.

If an'errur accurred, you may choose one of these three options:

Press R to record your program again., The same instructions listed -
previously reappear.

Press C to repeat the checking procedures. At this point, you may wish
to adjust the recorder volume and/or tone cuntruls._

- Press E to exit from the recording procedure. The computer directs vou
to stop the cassette and press ENIER. An error message appears on the
screen to inform you that the SAVE command did not properly record your
program. AQAfter checking your recorder, you can try to record the program
again. When the flashing cursor reaprears on the screens enter any BASIC

command.

When the SAVE command is performed, the program remains in MEMOrY » whether or
not an error occurs in recording.

Rafer to the SAVE command in Book 4 for further information on saving programs
to peripheral devices,

Page 51

O18P TI-99/2 Book 3 Advanced BASLIC Programming

Lnﬁdiua_a_ﬁintgdfﬂznanam

The OLD command is used to load a program from a peripheral device into
memory. The program can then be run with the RUN command. When an OLD
command iz executed, any open files are closed and any program in memory 13
avtomatically cleared before the next program is loaded.

Loading a Program Stored on a HEX-BUS peripheral

™

The format.of the CLD command used to load programs stored on Uafaﬁiaea
cartridges 1s

OLD HEXBUS.device-pumber.filename

where. device~pumber is the number of the peripheral device where the program
is stored and filgpawe is the name of the file used 1n the SAVE -command to

save the progranm.
Ot.D HEXBUS.1.MYPROG

The example above loads a copy of the program in the file MYPROG on the
cartridge in device 1 to computer memory. .

Loading a Program Stored on a Cassette

| The format for loading a program from a cassette with the OLD command 1is

OLD CSt

When the OLD CS1 command is entered, the computer prints instructions on the
screen for you to follow.

If the computer did not successfully read your program into memory, an error |
occurs and you may choose either of these options: o

Press R to repeat the reading procedure. Before repeating the procedure,
be sure to check the items listed on page XX.

“Press £ to exit from: the reading procedure. An error message is
displayed, indicating that the computer did not properly read your
- program into memory.

When the flashing cursor reappears on the screen, you can enter any BASIC
command. *

.Refer to the OLD cowmand in Book 4 for further information on loading
~-previously saved programs from peripheral devices. |

Page 52

O3itur 1L 7% o DUDK O HuvaliCew ol o edirammling

Using Files_ip Bead, Store. and Update Dafa

You can store, update, and print data to an external device by using the BRCIC
statements INPUT, PRINT, and RESTORE. How or, before you use these
statements you must always open a file on « peripheral device with the OPEN
statement. The OPEN statement informs the computer how the data on the file
are stored and the number that will be used to access the file. VYou do not
use the OPEN statenent when you use the B, C commands SAVE, OLD, or LIST,

When data are read, stared, and updated in a file, you wmust specify houw the
data are stored. The following sections duscribe the attributes among which
you can choose as you structure your data files.

Data Faormat

When data are stored, updated, or printed, you must specify to the computer
the data format or how the data are to be recorded. When data are to be
printed. for people to read, they should t-- recorded in RSCII characters (like
the characters displayed on the screen); this type of data format is called
DISPLAY. When DISPLAY data are printed, the numeric and string items are
written according to the specificatons in PRINT and appear the same as 1if the
items were displayed on the screen.

When data are stored on a mass-storage device, they should be recorded in
INTERNAL (machine language) format. Data written in INTERNAL format is stored
in binary codes the type the computer uses to process data. Storing data in
this format expedites processing and reduces the storage space required
because the computer doss not have to convert INTERNAL format 1o DISPLAY
format and back again. When INTERNAL data are used, the numeric and string

items are stored as shown belou.

gl Numeric items are stored in ° ‘orm that occupies 9 bytes of
memory. The first byte is used to store the length of the
numeric data item (which is always 8) and the 8 bytes are used to
store the data value. |

(DIAGRAM FP #2)

‘of String data are stored in the same manner, except that the
~ 7 maximum length for a string item extends to 56 brtec. The first
byte i¢ used to store the length of the string data and the
remaining O through 255 bytes are used to store the string value.

(DIAGRAM I'"$3)

Data Records

Data are stored, updated, and printed in a form called a cecorde A record
consists of one or more of the processing units called fields and a collection
of records is called a file. Records are numbered from O through 32767 uhere
record $#0 is the first record of the file, record #1 1is the second qecord of

the file, and so on.
é

Page 53

0318° TI-99/2 Book 3 wdvanced BASIC Programming
File organization

When you store and update files on mass-storage devices,y the records can be
arranged in sequence or in random order. If you want data to be stored soO
that they may be read in sequence from the beginning, the file should be
organized sequentially. Data stored in a sequential file are read in the same
way as they are read in a DATA statewment. Files kept on tape must be
sequential files. When you use external devices to print data for people to
read, the records are always processed in sequence beginning with the first
record.

If you want to process data directly without reading through all the data in
sequence, the file should be organized as a relative (or random access) file.
You must specify that a file is relative when you use the OPEN statement to
open the file. With relative files you can access a particular record by
using the REC clause in the INPUT, PRINT, and RESTORE statements. (The REC
clause. does not work with sequential files.) Relative files can alsao be
accessed sequentially. Only certain types of devices support relative files.

Record Type

The record type specifies whether the records on a file are all the same
length (FIXED) or vary in length (VARIRBLE). The keywords FIXED and VARIABLE
can be followed by a numeric expression specifying the wmaximum length of a
record. If the length is omitted, the computer assumes a the maximum record

- ™

~length. The maximum record length of the Waferlape peripheral is 255
bytes. When you design your records, be familiar with the lengthe of the
fields that make up a record. Plan your record so that you allow for the
largest length needed.

Relative files use only FIXED~length records. Sequehtial files can have
FIXED- or VARIABLE-length records. If record type is omitted for a sequential
file, VARIABLE-length records are assumed. .) -

If records are FIXED, the computer pads each record on the right to ensure
that it is the specified length. If the data are recorded in DISPLAY format,
the computer pads the record with spaces. If INTERNAL format 1s used, the

FIXED length record is padded with binary zeros.

The record length you specify determines how much space is reserved in
computer memory for storing a record of the file. If you attempt to write
data longer than the record length you specified, the computer breaks the data
into separate records. If you write a record that is smaller than the record
length you specified, the record occupies only as much space in the file as 1s
required to write its fields of data. When a record is read from a |
mass-storage device, the computer determines the length of the .record by
-indicators that were written when the record was created.

Page 54

0316P TI-99/2 Book 3 Advanced BASIC Programming

BASIC Statemepts_and Cowmands for Processina_Data

The TI-99/2 BASIC statements and commands provided for processing data are
OPEN, CLOSE, INPUT, PRINT, and RESTORE. The OPEN gtatement must be used to
provide a link between a file number and a file or device. In setting up this
link, the OPEN statement specifies how the file can be accessed (for input
and/or output) and how the file is organized. The OPEN statement must be
executed in a program before any BASIC statement attempis to use a file or
device requiring a file number. |

™
The OPEN Statement for HEX-BUS Peripherals

The OPEN statement sets up a link between a peripheral device and a file
number to be used in all the BASIC statements that refer to the file. In the
OPEN statement you specify file attributes such as file accessibility, file
arganization, record length, and file type. The computer then creates the
file according to the specifications in the OPEN statement. When vou use thé
OPEN statement to open a file that already exists, the file attri ites you
specify must match those you used when the file was created. Note that file
accessibility does not have to match the one used when the file was created.

For each opened file, the computer keeps an internal counter that points to
the next record to be accessed. The counter is incremented by 1 each time a
record is read or written. For random.access files, be sure to use the REC
clause if you read and write records on the same file within a program.
Because the same internal counter is incrementad when records are either read
from or written to the same file, you could skip some records and write aver
others if REC is not used.

The following section describes the attributes that can be specified in the
0PEN statement and the default values that are assumed if an attribute is

omitted.

File ficcessibilitys The open-mode attribute of the OPEN statement .
gpecifies how the file can be accessed. UPDATE is
assumed if no open-wode is specified. |

Open—mede_Aticibute Eile_fBccessibilily

-fNFUT o " The computer can only read the file.
OUTPUT The computer can only write to the file.
UPDATE The computer can both read from and write to the
file.
.: APPEND The cnnpﬁter can write daia gnly at the end of the |

file. The records that already exist on the file
cannot be accessed.

File Organization: SEQUENTIAL for sequential files or RELATIVE for
random-access files. If file organization is

omi-tted, SEQUEMTIAL is assumed.

Page 55

04l 11 -yY7/¢ boulk 4 Hdvahced broll Pl uwgl ditia hig

File Types (Data Formats): DISPLAY or INTERNALS if file type is omitted,
DISPLAY is assumed.

L]

Record Type. FIXED or VARIABLE followed by a numeric expression
specifying the record length. IJf record type 18
omitted, FIXED is assumed for RELATIVE files and
VARIABLE is assumed for SEQUENTIAL files. If the
numeric expression is omitted, the maximum record

length is estahlished by the peripheral device.

File Life: Files are permanent, not temparary. If file life
is omitted, PERMANENT is assumed.

The statement below contains only the required specifications in an OFEN
statement.

OPEN 473:“HEXBUS.1.BFILE"

The file BFILE on device 1 is referenced with a file $7 and uses all the
default options as shown below.

to! The file can be both read from and written to {UPDATE mode).
io! The file has SEQUENTIAL organization.
io! The file is stored in DISPLAY data format.

in! Because this is a SEQUENTIAL file and the record-type is omitted,
VARIABLE length records are assumed. The maximum length of a record
depends on what peripheral device is used.

In the example below, the OPEN statement opens a file that is to be referenced
as #5 in all of the BASIC statements that access the file. The file is opened
on device 100 (which is assumed to support relative files) with the filqpame

AFILE. The attributes of the file are RELATIVE (random-access) file o
arganization, INTERNAL format, INPUT open-mode, and a FIXED record length of -

64 bytes.
DPEN.tE:“HEXBUS.IOO.QFILE“rRELﬂTIUE;INTERNQL;INPUT,FIXED &4

Page 54

0318P 1i-9¢/2 Boohk 3 Advanced Heloio rrogramnelng

The OPEN Statement for the Cassette Recorder

The following section describes the attributes that can be specified in the
OPEN statement for the cassette recorder and the default values that are
assumed if an attribute is omitted. The at .ibutes that are followed by an
asterisk (*¥) must appear in the OPEN stat- at,

File-number¥* | any number from 1 through 255.
Filename* CS1

File organization SEQUENTIAL

Open-mode® INPUT or QUTPUT

Record-type* FIXED

For cassette tape records, you may specify any length up to 192 positions.
However, the cassette tape device uses records with &4, 128, or 192 positions
and pads the record you specify to the appropriate length. Thus, if you
specify an 83-position cassette record, the computer actually writes a
128-position record. If the record length is not specified, a 64-positian
record length is assumed.

When using a cassette recorder, the computer does not compare the file
specifications in the OPEN statement to th: characteristics of an existing
file.

When the computer performs the OPEN statement for a cassette recorder,
instructions are printed on the screen for activating the recorder as shown

belou.

~100 OPEN #2:"CS1", INTERNAL y INPUT,FIXED

e .
». (Program lines . . .)

~290 CLOSE #2

»300 END

% REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

* PRESS CASSETTE PLAY Cs1
THEN PRESS ENTER

. (Program runs . « »!}

-

* PRESS CASSETTE STOP CS1
THEN PRESS ENTER

Page 57

Qolgd 1i-yv/(d BOOKk J HOvanCed SHRLL Vi USi allimd iy
The CLOSE Statewent

The CLOSE statement breaks the link between the file-number and the peripheral
device. You cannat access this file until you OPEN it asain. If you attempt
to cloze a file that is not openy an error message is displayed. The CLOSE
statement can be used to delete a file on some peripheral devices. Refer to
the appropriate peripheral manual for more information.

The following statements open the file CFILE on davice 2y read three values,
and close the file.

»100 OPEN #3:"HEXBUS.2.CFILE",INTERNAL
»110 INPUT #3: NAMES,HOURS,WAGE
120 CLOSE #3

™
Initializing a Storage Medium on a HEX=BUS Peripheral

™

To initialize or format a storage medium on a HEX-BUS peripheral such as a

| ™ .
wafer in the Wafertape peripheral, the OPEN statement with the FORMAT
MEDIA option is used as shown below.

OPEN #file-number:"HEXBUS.FORMAT MEDIA.device-code”

™

ITa save a program on a new cartridge in Wafertape device #1, the following
statements can be used.

OPEN #5:"HEXBUS.FORMAT MEDIA.1"
CLOSE #5
SAVE HEXBUS.1.MYPRQG

The DELETE Statement | *

The DELETE statement can be used to delete a file from an external storage
device, as well as to delete lines from a program (described earlier in

"F4iting Program Lines”).

. DELETE “HEXBUS.1.MYFILE" . (Deletes the file named MYFILE on
| ~ device 1.)

The INPUT Statement

The INPUT statement is used to read data values from a file. You must use the
same file-number to read this file as you did to open the file. When the
INPUT statement is executed, the data read from the file are agsigned to the
wariables listed in the INPUT statement. SR "

Filling the INPUT Variable-List

When the computer reads a file, it retrieves and stores an antire record in a
temporary storage area called an input/output ¢(I/0) buffer. Values are then
assigned to the variables in the-variable-list from left to right, using the
data items . (or fields) in the I/0 buffer. A separate buffer is provided for

each file opened.

Page 58

0318PF TI-99/2 Baok 3 Advanced BARSIC Programmilng

If the variable-list of the INPUT statement is longer than the number of
fields held in the I/0 buffer, the computer retrieves the next record from the
file and uses its fields to complete the variable-list. When a variable-list
has been filled with the corresponding values, the fields left in the buffer
are discarded unless the INPUT statement ends with a comma (as described later
in "Pending Input Conditions").

The computer knows the length of each data item in a DISPLAY data record by
the commas placed between items. Each iten in a DISPLAY data record 1s
checked to ensure that numeric values are stored in numeric variables. If the
data do not match the variable-type, an INPUT ERROR occurs and the program
terminates.

The computer knows the length of each INTERNAL item by interpreting the
one-position length indicator at the beginning of each item. Limited
validation of INTERNAL data items is performed. All numeric items must be 9
positions long and must be valid representations of floating-point numbers.
Otherwise, an INPUT ERROR occurs and the program terminates.

For FIXED-length, INTERMAL records, reading beyond the actual data recorded 1in
each record causes binary zeros to be read. [f you attempt to assign these
characters to a numeric variable, an INPUT ERROR occurs. If strimgs are being
ready a null string is assigned to the string variable.

The statements below oren a file that is referred to as $#3. The computer
reads a record into the input buffer and®assigns the fields in the record to
the variables in the INPUT statewent. If there are wmore fields in the buffer
than are needed to assign to the variables, the remaining fields are
diescarded. If there are not enough fields to assign, the computer reads
another record.

OPEN #3:"HEXBUS.1.MYFILE™, INTERNAL
INPUT #3:NAMES,EMPNUMBER,SOCSECS

Pending Input Conditions

An INPUT statement that ends with a comma creates a pending input condition.
Any remaining fields in the input buffer are maintained for the next INPUT
statement that reads the file. If this next INPUT statement has no REC
clause, the computer starts assigning the remaining fields in the buffer to
the variables in the INPUT statement. If the INPUT statement contains a REC
clause, the remaining fields are discarded and the specified record is read
into the I/0 buffer. If a pending input condition exists when a PRINT,
RESTORE, or CLOSE statement accesses the file, the remaining fields are also

discarded.

The statements below open a file and create a pending input cund1tlun. Af ter
the variables are assigned in the first INPUT statement, -any values left in
the input buffer are retained. When the next INPUT statement is executed, the

remaining values are assigned to the variables.

OPEN #3:"HEXBUS.1.MYFILE", INTERNAL,V"RIABLE &4
INPUT #3:NAMES, EMPNUMBER, SDCSECS:
INPUT #3:RDDRS,AGE

Page 59

O318P Ti-99/2 ook 4 Advanced HELIU Programmlng

When the INPUT statement reads DISPLAY data, the fields are separated by
commas. DISPLAY recards look like the data in a DATA statement. Therefore,
numeric and string items must appear as they do in a DATA statement alang with
their separators. Each field in a DISPLAY record is checked to ensure that
numeric values are placed in numeric variables. |

The program below computes the average test score. The student’'s name is read
followed by his test grades.

(Record #0 on file #1) Jones,?%,98,65,32,78
(Record %1 on file #1) Smithy&/7:87 646,90
(Record #2 on file #1) Lee,89,88,70,47,70

»100 OPEN #1:“'HEXBUS.1.MYFILE",INTERNAL ,VARIABLE &4
>110 INPUT #1:NAMES,G1,G2,63,064,65

»120 PRINT NAMES; "AVERAGE IS “;(G11621G3+G4+G5)/5
=130 GOTO 110 |

The first time the INPUT statement is executed, it assigns the values in the
first record to the variables. The average is computed and printed. The
second time the INPUT statement is executed, the values in the second record
are assigned to the variables. Note, however, that there is no value in the
buffer for the last variable. Therefore, the INPUT statement reads the next
record and attempts to assign a value to that last variable. An error occurs
because the variable is a numeric variable and the value is not a numeric
value.

When the INPUT statenent reads INTERNAL data, the length byte stored with sach
data item separates the fields. The only validation performed on INTERNAL

data.iﬁ to ensure that numeric data are 8 characters long.

The PRINT Statement

The PRINT statement writes data values to a file. You wmust use the same.
file~number to write to the file as you did when you opened the file. When

the PRINT statement is executed, the values of the items in the print-list are
written to the file. |

To write a record to the end of a sequential file, you can use the open-mode
APPEND (but you cannat access the ather records in the file). To write to the
end of the file in UPDARTE mode, you wust first read to the end of the
sequential file before you write the new record. Using the PRINT statement
before the end-of-file is reached results in a loss of data because the PRINT
statement aluays defines a new end-of-file each time it is executed.

The values of the variables in the PRINT statement are written in a temporary
storgge area called an I/0 buffer. A separate buffer is provided for each
open file number. -

Refer to PRINT (with files) for information on how the PRINT statement writes
a record in INTERNAL or DISPLAY data format.

Page &0

0318FP Ti-99,¢ Book 4 &dvanced unmoll riogramiling

Note that if you print a file in DISPLAY format that the computer later reads,
the file must look the same a3 it does in a DATA statement. You must i1include

the comma separators and quotation marks needed by the INPUT statement. When

the data are read from the file, the computer separates the fields by means of
the comma separators placed between them.

%100 OPEN #6°"HEXBUS.1.PENDING",DISPLAY,OUTPUT

110 INPUT NAMES

120 IF NAME$="$END" THEN 150

>130 INPUT DyE

>140 PRINT #6: NAMES; “,"; G1j “",“; G283 “,* 5 G337 “,“; G43 "," 7 G5
+150 GOTQ 110 |

»1.60 CLOSE #6

If the file in the example above had been opened with a DISPLAY data format,
the PRINT to the file must write print separators hetueen the values for them
to be read later.

Pending Print Conditions

When a PRINT statement ends with a comma or semicolon, the values of the
print-list are retained in the I/0 buffer for the next PRINT statement that
Wwrites to the file. If this next PRINT statement has no REC clause, the
computer places the values of the print-list into the I1/0 buffer immediately
following the fields already there. If the PRINT statement has a REC clause,
'the computer writes the pending print that is in the I/0 buffer to the file at
" the pasition indicated by the internal counter. Then the new PRINT statement
15. executed.

If a pending print condition exists and an INPUT statement that accesses the
file is encountered, the pending print record is written to the file at the
position indicated by the internal counter and the internal counter 1is
incremented. Then the INPUT statement is performed as usual. If a pending
print exists when a CLOSE or RESTORE statement accesses the file, the pending
print is executed before the file is closed or restored. |

For example, the following statements open a file for outputs accept data from
the keyboard, and write it to the file until a $END is entered.

=-101:) OPEN te:"HEABUS.i.PENDING".INTERNﬂL OUTPUT
>110 INPUT NAMES

120 IF NAMES$="$END* THEN 160

»130 INPUT G1,G2,G3,G4,65

+140 PRINT #4:NAME$,G1,62,G3,64,G55

150 GOTO 110

»160 CLOSE #4

Page 41

O315P TI-2%/¢ Boouk J Hdvanced Rl 109t amind i)
The EOF Function

The EOF function determines if an end-of-file has been reached. The EOF
function can be placed before an INPUT statement to test the file status
before attempting to read from the file. The value that is returned by EOF 1s

0 if you are not at the end of the file and -1 if you are at the end of the '

file.

For example, the statements below open a file and check whether the
end-of -file has been reached before trying to read a record. When the
end-of-file is reached, the file 13 closed.

100 OPEN #6:"HEXBUS.2.CFILE", INTERNAL
»115 PRINT “NAME:“;"GRADES:"

»120 IF EOF(46) THEN 180

=130 INPUT #4: NAMES,G1,62,63,064,05
»140 PRINT NﬂHES!GIrGEIGQ!G4 G5

>150 GOTO 120

»160 CLOSE #6

The RESTORE Statement

The RESTORE statement can be used to reposition an open file at record zerg
(for a sequential file) or at a specific record (for a relative file). If
RESTORE refers to a relative file and the REC clause is not used, the file is

- repositioned to record zera.

For example, the statements below open a file referred to as #1, accept data
from the keyboard, and write the processed data to the file. The file is then
repositioned to the first record. A printer is opened with a file number of
3. The data are read from file #1 and printed on file #3. When the
end-of-file is reachad, the message END OF DATA is dlsplayed.

>100 OPEN #1:"HEXBUS.1.RESFILE" , INTERNAL N
110 INPUT “ENTER NAME: “:NAMES
>120 IF A%="END$" THEN 140
»130 INPUT "ENTER GRADES: ":61,62,G3,064,65
»140 PRINT #1:NAME$,61,G2,G3,G4,65,
»150 GOTO 110
#1460 RESTORE $1

%170 OPEN #3:"HEXBUS. 50“:UUTPUT
>180 IF EOF (1) THEN 220
190 INPUT #1:NAMES,STS,ZIPS
»200 PRINT $3:MNAMES,STS,ZIPS
»210 GOTO 180
»220 PRINT “END OF DATR"
»230 CLOSE #1

Page &2

0318P TI-9v,/¢ UBook 3 Rdvanced BRLIC Programming

Answers to Review on page 2%

l.
»100 READ A%$,B%$,C$,D
»110 PRINT A$:88$:C$;0
2120 DATA "HI.","MY NAME IS MARY.","AG™ 10
C.
+110 READ X
2140 DATA Equérarlo
3. ‘

~100 X=90%0,01745329251794
+110 PRINT SINCX) ICOSTX):TAN(
X)

4. A 5bace 1 printed for an input of 32. Each time the program is runs the
computer displays the character matching the character code that you input.

5.
100 FOR J=1 TO &
»110 READ X
#1200 PRINT CHR$(X)
»130 NEXT J
=140 DATA 43,47[61159[5?

6. a) The _LEN_ function returns the number of characters in the string
© specified by the argument.

by _DATA_ statements can appear anywhere in a program.
cy X°(1/2) is equivalent to SGR(X).

d> _EXP_ is the inverse of the LOG function.

e) AIN(X) calculates the angle whose tangent is X.

f} The STR$ or string-number function converts the number specified by
“ " the argument into a _sirips_constant. . -

g) The _RERD_statement tells the computer to look at values in the DATA
statewment.

h) _DATIA._ statements alone do not cause the computer to do anything,
because they merely store values t~ he read by the computer.

- 1) Three statements assign values to -ariables in a BASIC program: they
are the _LEI _(assignment). statement, the _INPUI. statement, and the
BEAR and _DATRA. statements.

Page £4

page &°

e el B ree =

Q318P T11-99/2 Book 3 Advanced BRSLIL rogramming
Applications Programs
Information Banasement

Checkbook Balance

=100 DIM CNUM(10),CANT(10),0A
MT(1Q)

110 CALL CLEAR

»120 INPUT "BANK BALANCE? "3
ALANCE

130 PRINT "ENTER EARCH OQUTSTA
NDING™ |

»140 PRINT "CHETK NUMBER AND
AMOUNT ™ |

#1580 PRINT

»160 PRINT “ENTER A ZERQ FOR
THE" -

»170 PRINT “CHECK NUMBER WHEN
FINISHED. *

#180 PRINT

#1900 N=Nt1

»200 INPUT “CHECK NUMBER? “:IC
NUM(N) |

»210 IF CNUM(N)=0 THEN 250

>220 INPUT “CHECK AMOUNT? “:
AMT(N)

»230 CTOTAL=CTOTAL CAMT (N)

>240 GOTO 190

250 PRINT "ENTER EACH OUTSTA
NDING"

260 PRINT "DEPQOSIT AMOUNT.®

+270 PRINT

»280 PRINT "ENTER A ZERO AMOU
NT*

>290 PRINT "WHEN FINISHED."

+300 PRINT

»310 M=M}1

320 INPUT “"DEPOSIT AMOUNT? *
sDAMT (M)

»330 IF DAMT(M)=0 THEN 340

340 DTOTAL=DTOTALOAMT (M) |

»350 GOTO 310
»360 NBAL=BALANCE-CTOTAL+DTOT
AL

»370 PRINT “"NEW BALANCE= "jNB

AL

»380 INPUT "CHECKBOOK 8ALANCE
2 “iCBAL

x390 PRINT “"CORRECTION= “jNBA
L-CBAL

Future Value of Investment

»100 REM FUTURE VALUE
»110 INPUT “ENTER PRESENT YAl — -,

UE: ":PV
»120 INPUT “ENTER % INTEREST:

130 INPUT “ENTER # OF PERIOD
51 "3
140 FU=INT (((PY*(141/100)"N)

$.005)%100)/100
“1EA DRTHT "EUTHRE O HIF= R

—

0318P TI-?9/2 Book 3 Advanced BASIC Programming
Monthly Payment

>100 REM MONTHLY PAYMENT

»110 INPUT "ENTER PRESENT VAL
FHY

»120 INPUT "ENTER % INTEREST:

»130 INPUT "ENTER # OF YEARS:
"N

»140 PMT=PV/((1-(141/1200)" (-
N%12))/(1/1200))

»150 PMT=INT((PMT+.005)#100)/
100

»160 PRINT “PRYMENT= $";STRS(
PHT)

Wind Chill Factor

»100 CALL CLEAR

»110 INPUT "ENTER DEGREES F:
“s TEMP

»120 INPUT "ENTER MPH OF WIND
s "sUEL

»130 WCF=91.4-(.288%SAQR(VEL >+
480~ ;01 9%VEL) # (91 . 4-TEMP)
»140 PRINT INT(TEMP);“DEG. &"

- JINTCVEL) S "MPH WIND";"="3INT

(WCF) 3 "DEG. WIND CHILL FACTO

»180 GOTO 110
Education

Factorials

>100 CALL CLEAR

»110 PRINT "FACTORIALS OF AN
INTEGER":"FROM 0 TO 49°

*120 PRINT

»130 INPUT "ENTER A NUMBER “:

140 IF (0<=N)®(N<70) THEN 16
0

»160 GOTO 170

»160 IF N-INT(N)=0 THEN 190

>170 PRINT "INVALID NUMBER"

>180 STOP

3190 F=1

2200 FOR N=1 TO N

210 FaF%N

»820 NEXT N

»230 PRINT FACTORIAL OF “;(N-
1);"IS *5F

Page &8

0318P 11 %./¢! ook 3 Advaneed bHbIL Pragi amiiing

Math (Multiplication and Division)

=100 CALL CLEAR

%110 PRINT “"MULTIPLICATIOM OR
DIVISION":®

»120 N=0

=130 INPUT "ENTER M FOR MULTI
PLICATION: D FOR DIVISION "“:
A3

=140 IF A$=“M" THEN 170

=150 IF A$="D* THEN 300

»160 GOTO 120

=170 INPUT *FIRST NUMBER ":f

»180 INPUT “TIMES “:B

=190 INPUT "= “:C

w200 IF A%*B=C THEN 280

+210 IF N>1 THEN 260

2P0 PRINT *WRONG, TRY AGAIN*
A3" TIMES ";8;

=230 INPUT * =7 ":C

240 N=N+1

»@80 GOTQ 200

260 PRINT “WRONG,*:"THE ANSW
ER IS “":Q43;" TIMES “;B3" = "3
A*B

+270 GOTO 450

- »280 PRINT *VERY GOOD*

»290 GOTO 450

»300 INPUT "FIRST NUMBER ":R

310 INPUT *DIVIDED BY “:B

320 IF 10"6%A/B=INT(10"4%A/B
) THEN 350

»330 PRINT “THAT'S TOD DIFFIC
ULT"4“TO CALCULATE,":"TRY AG
AIN"

%340 GOTO 300

»350 INPUT * = *iC

%360 IF A/B=C THEN 440

»370 IF N>1 THEN 420

~ »3B0. PRINT “THAT'S INCORRECT,

TRY AGAIN": * DIVIDED BY "j
:H

»390 INPUT " =7 "%

>400 N=Nt1

»410 GOTO 340

=420 PRINT "THAT'S INCORRECT.
":"THE ANSWER IS “:3" DIVID
ED BY "3B3" = "“3;R/B '

~430 GOTO 450

~440 PRINT “EXCELLENT"

»450 INPUT *MORE?(Y/N)*“:iD$

460 IF D$="Y" THEN 120

470 IF D§="N* THEN 490

~480 GOTO 450 -

#4920 END

Page &9

J— il

Valbl hi-F7 e BUOOK J

Metric Conversion

»100 REM UNIT CONVERSIONS

¥110 CALL CLERR

»120 PRINT "UNIT CONVERSIONS"
: "CHOOSE A NUMBER®

»130 PRINT

»140 PRINT *1. INCHES TO CENT
IMETERS®

»150 PRINT “2. CENTIMETERS TC
INCHES*

»160 PRINT “3. FAHRENHEIT TO
CELSIUS"

»170 PRINT “4, CELSIUS TO FAH
RENHEIT"

»180 PRINT “5. MILES TO KILOM
ETERS*

»190 PRINT "6. KILOMETERS TO
MILES"

»200 PRINT

>210 INPUT "ENTER A NUMBER:"“:
N

- »220 CALL CLEAR

~230 IF N=1 THEN 300
~240 IF N=2 THEN 350
»250 IF N=3 THEN 400
~260 IF N=4 THEN 450
»>270 IF N=S5 THEN 500

.»280 IF N=46 THEN 850

290 GOTO 100

»300 INPUT "INCHES? ":I

+310 C=I%*2.54 |

320 PRINT I;"INCHES="3C3“CEN
TIMETERS"

~330 GOTO 400

340 STOP -

+350 INPUT "CENTIMETERS? “:iC

~360 I=C/2.54

2370 PRINT Ci;"CENTIMETERS=";I
3 "INCHES*" .

380 GOTO &0

»390 STOP .

. ' gl *

»400 INPUT "FAHRENHEIT? ":iF

7410 C=(F-32)%5/9

#4420 PRINT F3“FRHRENHEIT="3C;
“CELSIUS"

~430 HOTO- 600

~440 STOP

»450 INPUT “CELSIUS? *“:C

460 F=C*9/5432

~470 PRINT C;“CELSIUS="3iF;"FA
HRENHEIT®

+480 GOTQ &00

~890 STOP

~500 INPUT "MILES? “IM

~510 K=M#1,409344 .

»520 PRINT Mj "MILES="3K;“KILO
METERS*® E

~530 GOTO 400

»540 STOP :

~550 INPUT “KILOMETERS? "<

~560 M=K/1.609344

»570 PRINT Kj3"KILOMETERS="3M;
NMTI

RUVALCED BHOLL PrOgrammiing

- .

~590
+60Q
#610

DO
»620

#630
=640
»650

ST0P

PRINT

PRINT "WOULD YOU LIKE TO
SOME " 2 “MORE™?®

INPUT “ENTER Y OR N: "IA

CALL CLERR
IF A%="Y" THEN 120
STOP

Page'70

0318P TI-99/2 Book 3 Advanced BRSIC Programming

Entertainmeht

Blackjack

»100
+110
»120
130
+140
150
~160
+170
»180
+190
»200
~210
el
»e30
+240
250
»260
»270
»e80
»270
#300
- »#310
»320
+330
»340
+380
»360
+370
+380
#3790
>400
»410
»a20
+430
+440

REM BLACKJACK
RANDOMIZE

CALL CLEAR
PRINT "PLAYER "3

A=¢

GOSUB 280

A=1

CALL KEY(0,K,S?
IF §=0 THEN 170
IF K=72 THEN 150
PRINT "DEALER “3
A=2

GOSUB 280

A=1

CALL KEY(0,K,S)
IF S=0 THEN 240
IF K=72 THEN 220
GOTO 100

FOR I=1 TO A
N=INT(13*RND)+1
IF N=1 THEN 340
IF N=11 THEN 380
IF N=12 THEN 400
IF N=13 THEN 420
C$=STRE(N)

GOTO 430

c$=nnn

GATO 430

C$=NJH

GOTO 430

c‘.unu

GOTO 430

Cs'.K"

PRINT C$3" *5

NEXT I

%450 RETURN

Page 71

0318P TI¥?9EE Book 3 Rdvanced brhe.o Programmlng
Call Key

This program places a black cursor in the middle of the screen. Using the S,
D, £, X keys, you can draw anything you like with the black cursor.

100
3110
120
*130
140
150
160
%170
180
190
200
»210
>220
»230
240
»250
>260
2270
»280
>890
%300
»310
»320
>330
»340
»380
>340
370
380
>390
>400

CALL CLEAR
R=12

C=16

CALL HCHAR(R,C,30)

CALL KEY(OyK,S)
If S=0 THEN 140
IF K=69 THEN 210
IF K=68 THEN 260
IF K=83 THEN 310
IF K=88 THEN 340
GOTO 140

R=R-1

IF R<1 THEN 240
GOTO 130

R=24
GOTO 130
C=C1

IF C>32 THEN 290
GOTO 130
C=1
GOTO 130
C=C-1
IF C<1 THEN 340
GOTO 130

=3
GOTO 130
R=R+1

IF R>24 THEN 390
GOTO 130
R=1
GOTO 130

Page 72

0318P TI-99/2 Book 3 Advanced BASIC Programming

Simon

»100

REM SIMON

~110 CALL CLEAR

>120
130
140

PRINT “CHASE ME“
PRINT
INPUT “CHOOSE GAME A OR

a9
»150 N=0
+160 DIM F(25)

»170
»180

DIM B(25)
RANDOMIZE

>190 N=Nt1

»200
#2190
~2a0
#230
>240
250
260
+270
»e80
»270
300
+310

- +320

+330
+340
350
»3460
SI

»370

+380
+390
400
>410
>420
»430

IF N=25 THEN 510
F(N)=INT (10%RND)

FOR K=1 TO N

DISPLAY F(K)

FOR J=1 TO 40

NEXT J

CALL CLEAR

NEXT K

IF A$->"A* THEN 350
FOR M=1 TO N

INPUT B(M)

IF B(M)<>F(M) THEN 430
CALL CLEAR

NEXT M

GOTQ 190

IF A$<>"B" THEN 110
PRINT *CHAGE ME BACKWARD

FOR L=N TO 1 STEP -1
INPUT B(L)

IF B(L)<HF(L) THEN 430
CALL CLEAR

NEXT L

GOTG 190

PRINT *OOP!“:"YOU SHOULD

HAVE ENTERED"

440

450

FOR I=1 TO N
PRINT F(I)

2460 NEXT I

»470

GOTO 510

»480 FOR I=N TO i1 STEP -1

~490

PRINT F(I)

+500 NEXT I

~610 PRINT "“YOUR SCORE IS ":(

~ N-1)

520 PRINT "DO YOU WANT TO TR
Y AGAIN?*"

%530 INPUT "ENTER ¥ OR N *:B$

»540 IF B$="Y" THEN 120

550 END |

Page 73

